

Alloys from Nb-W-Cr System for High Temperature Applications

S.K. Varma¹

P. Kakarlapudi¹, B. Portillo¹, Maria Gonzalez¹ and K. Natesan²

¹Department of Metallurgical & Materials Engineering University of Texas at El Paso, EL Paso, TX 79968 ²Argonne National Laboratory, Energy Technology Division, Argonne, IL 60439, USA

Acknowledgements

 Aational Energy Technology Laboratory (NETL) of Department of Energy, DOE (Award number: DE-FG26-05NT42491)
Argonne National Laboratory, Argonne, IL
Dr. W. Durrer, Dept. of Physics, University of Texas at El Paso

In this presentation we are reporting the progress on the results of our study on the oxidation of alloys from Nb-W-Cr system

Overview

- Introduction
- Experimental details
- Results & Discussion
- Conclusions

Physical Properties of Nb, W, Cr, and Ni

	Nb	W	Cr	Ni
Melting Point (°C)	2,469	3,422	1,863	1,453
Crystal Structure*	bcc	bcc	bcc	fcc
Density (gm/cm ³)	8.57	19.3	7.9	8.9

*bcc = body-centered cubic; fcc = face-centered cubic

Experimental details

- The materials were fabricated by the Ames Laboratory of Iowa State University
- A Oxidation experiments from 700 to 1400°C in air were conducted with the use of a computerized temperature control tube furnace
- Weight gain method was used for obtaining the oxidation curves
- **4** Optical Microscopy
- **X-Ray Diffractometer : XDS 2000**
- **4** FESEM : Hitachi 8700
- **4** XPS & AES: PHI 560 ESCA/ SAM UHV system

Results & Discussion

As Cast Structures

Isotherm of Nb-W-Cr system at 1000°C

 $\alpha_1 - cl^2$ $\alpha_2 - cl^2$ NbCr₂ - *hp12* or *cF24*

Isotherm of Nb-W-Cr system at 1500°C

As-Cast SEM Microstructures

As-Cast SEM Microstructures

As-Cast XRD Patterns A alloys

As-Cast XRD Patterns B alloys

Short term oxidation

Oxidation curves

Oxidation curves

Oxidation curves

Faceting after STO of alloy B

1300°C after 24 hours of oxidation

Products of oxidation of alloy AB

Products of oxidation of alloy BB

Products of oxidation of alloy AC

Products of oxidation of alloy BC

Properties of Select Metal Oxides

Oxide	Color	MP (°C)
NbO	Black	1,937
NbO ₂	Blue-Black, White	1,900
Nb ₂ O ₅	White	1,512
WO ₃	Yellow	1,473
WO ₂	Brown	1,500
Cr ₂ O ₃	Green	2,450

XRD results on STO powders A

XRD results on STO powders AB

XRD results on STO powders AC

XRD results on STO powders B

XRD results on STO powders BB

XRD results on STO powders BC

X-Ray Mapping on SEM : alloy B

X-ray mapping on AB 1400

SEM on alloy B

SEM on polished surface of B alloy

Oxidized in air at 1200,1300, and 1400°C for 24hrs 1000x

Oxidation in air at 1200, 1300 and 1400°C for 24hrs 1000x

Oxidation in air at 1200,1300, and 1400°C for 24hrs 1000x

Oxidation in air at 1200,1300, and 1400°C for 24hrs 1000x

Oxidation in air at 1200,1300, and 1400°C for 24hrs 1000x

EDS results for BB alloy

BB 24 hrs	T (°C)	Oxide	O at. %	Nb at. %	Cr at. %	W at. %
Round Particles	1400	CrNbO ₄	69.84	16.19	13.43	0.54
	1300	CrNbO ₄	65.94	18.03	15.06	1.42
Cylindrical Particles	1400	Nb_2O_5	67.61	26.6	1.82	3.97
	1300	Nb ₂ O ₅	72.48	23.73	1.01	2.77

SEM on polished surface of AB alloy

EDS analysis on BB and AB alloys

Oxidized in air at 1200,1300, and 1400°C for 24hrs

AT.%	N	b	V	V	(Cr	()
	F*	H *	F	Н	F	Н	F	н
BB1200	26.5	24.1	5.61	4.24	5.81	8.84	62.08	62.78
BB1300	27.1	22.8	6.43	4.28	4.92	12.25	61.53	60.67
BB1400	25.0	25.6	3.08	3.71	7.29	8.3	64.6	62.36
AB1200	29.8	42.3	8.17	5.8	1.47	11.5	60.5	40.3
AB1300	33.6	26.2	5.68	4.33	0.94	13.8	59.69	55.6
AB1400	32.8	18.9	5.25	2.5	1.19	11.07	60.73	67.5

*F = Flat regions in micrograph; H = Hollow regions in micrograph

Oxidized in air at 1200,1300, and 1400°C for 24hrs 1000x

SEM on polished surface of AC alloy

Oxidized in air at 1200 and 1400 for 24hrs 1000x

SEM on polished surface of BC alloy

Oxidized in air at 1200, 1300, and 1400 for 24hrs 1000x

Thermal Linear Expansion Values (%) for Metal Oxides

Oxide	700	800	900	1,000
Nb ₂ O ₅	0	0.02	0.04	0.07
Cr ₂ O ₃	0.54	0.60	0.68	0.76
WO ₃	0.98	1.02	1.14	

Long term oxidation

Oxidation behavior of alloys B, BB, A, and AB 🕖

Weight gain chart - LTO

Weight gain chart - LTO

Weight gain chart - LTO

XPS on alloy B

Features of Oxidation Resistance

- Complete powders at 800 and 900°C and significant amounts at 700 and 1000°C
- Oxidation resistance increases with the increase in temperature during LTO

Solubility of Oxygen in Nb and Cr

	Temperature (°C)	Solubility (at.%)
Cr	1,100	0.0025
	1,500	0.043
Nb	700	1
	1,915	9

SEM – High temperature oxidation of alloy B

SEM – High temperature oxidation of alloy B

Conclusions

- Powder formation or fragmentation during oxidation in air is perhaps due to formation of WO₃ because of its extremely high thermal linear expansion.
- NbCr₂ may be the micro constituent responsible for enhanced oxidation. The amount of it decreases with an increase in temperature in the range of 1100 to 1400°C which may contribute to the improved oxidation resistance.

Conclusions

It appears that Cr concentration controls the oxidation resistance at elevated temperature.

An increase in oxidation resistance with an increase in temperature at elevated temperatures can be attributed to the unusual increase in oxygen solubility in Nb.

Conclusions

A NbCrO₄ and Nb₂O₅ are falling off from the alloy during high temperature oxidation.

B addition is not beneficial for improving the oxidation resistance of high Cr alloys. Role of B in these alloys is not well delineated from the results of this study.

