Novel Anionic Clay Adsorbents for Boiler Blow-down Waters Reclaim and Re-use

M. Dadwhal, N. Kim, M. Sahimi, and T. Tsotsis

Mork Family Department of Chemical Engineering and Materials Science University of Southern California

- Background
- Experiments
- Results and Discussion
- Simulations
- Conclusions
- Future Work

- Water Demand: The electric power generation industry competes for water with other growing sectors of the economy
- Solution: Reclaim & reuse spent-water to reduce the pressure on traditional cooling water sources
- Contaminants of Concern in this Study:
 - Arsenic (As) MCL of 0.01 ppm
 - Selenium (Se) MCL of 0.05 ppm (USA), MCL of 0.01 ppm (Europe and Japan)
- Technique Used: Adsorption (Layered Double Hydroxides)

Background, cont.

WHAT IS A HYDROTALCITE ?

Formula: $\left[M_{1-x}^{II}M_{x}^{III}(OH)_{2}\right]^{x+}A_{x/n}^{n-}.yH_{2}O$

$$0.2 \le x \left(= \frac{M^{III}}{M^{II} + M^{III}} \right) \le 0.33$$

M^{III}: Mg, Fe, Co, Cu, Zn *M*^{III}: Al, Cr, Mn, Co, Ni *A*: CO_3^{2-} , OH⁻, NO_3^{-} , SO_4^{2-}

Background, cont.

Why is Hydrotalcite a good adsorbent?

- It has significant number of exchangeable ions
- Large interlayer spaces
- Requires a simple regeneration procedure

Various Applications

Catalyst, Catalyst support, Adsorbent, Electrochemical and Medical Applications, Ion Exchange Materials

Adsorbent Preparation

- Mg-Al-CO₃-LDH
- Co-precipitation method

Conditioning the Adsorbent

- Significantly reduces the Mg and AI dissolution
- Tempers the solution pH change

Experiments, cont.

Batch Studies

- Adsorption Kinetics
- Adsorption Isotherms
- Effect of Particle Size
- Effect of pH

Column Studies

- Effect of Flowrate
- Effect of Feed Concentration
- Effect of Particle Size
- Effect of pH

Particle Size Characterization

53-75µm

90-180µm

75-90 μm

180-300 μm

Particle Size Characterization, cont.

Sips Isotherm

<i>a</i> -	=	$Kq_sC_s^n$		
9 -		$\overline{1+KC_s^n}$		

pН	$q_s(\mu g/g)$	K(l/g)	n
5.5	8045.37	0.662	0.51
7.0	6130.28	0.6548	0.45
8.5	3619.90	0.649	0.58

Homogeneous Surface Diffusion Model (HSDM)

$$\frac{\partial q_i}{\partial t} = \frac{1}{r_i^2} \frac{\partial}{\partial r_i} (r_i^2 D_s \frac{\partial q_i}{\partial r_i})$$

$$q = 0, t = 0$$
$$\frac{\partial q_i}{\partial r_i} = 0, r = 0$$
$$q_i = \frac{Kq_s C_s^{1/n}}{1 + KC_s^{1/n}}, r = R$$

$$\overline{q} = \frac{3}{R^3} \int_0^R q \ r^2 dr$$

 $V(C_0 - C) = M\overline{q}$

Data and Simulations (HSDM)

Calculated Diffusivities (HSDM)

Arithmetic Mean:

$$d_{10} = \frac{\sum_{i} n_i d_i}{N}$$

Volume Mean:

Mesh size	d ₁₀ (μm)	D _s (cm²/s) (×10¹¹)	d₃₀ (μm)	<i>D_s</i> (cm²/s) (×10¹¹)	<i>D*(</i> cm²/s) (×10 ¹¹)
200-270	68.1	1.642	69.2	1.696	1.12
170-200	82.7	1.646	84.6	1.722	1.02
80-170	146.3	3.906	150.5	4.134	2.59
50-80	274.5	10.031	279.4	10.392	6.47

Bidisperse Pore Model (BPM)

$$\frac{\mathbf{Macroparticle}}{\frac{\partial C_{M}}{\partial t} + \frac{(1-\varepsilon)}{(\varepsilon)} \rho_{s} \frac{\partial \overline{q_{\mu}}}{\partial t} = \frac{D_{M}}{r_{M}^{2}} \frac{\partial}{\partial r_{M}} \left[r_{M}^{2} \frac{\partial C_{M}}{\partial r_{M}} \right] \qquad \begin{pmatrix} \text{initial and Boundary Conditions} \\ \frac{\partial C_{M}}{\partial r_{M}} = 0, r_{M} = 0 \\ C_{M} = C(t), r_{M} = R_{M} \\ \end{pmatrix}$$

$$\frac{\mathbf{Microparticle}}{\frac{\partial q_{\mu}}{\partial t}} = \frac{D_{\mu}}{r_{\mu}^{2}} \frac{\partial}{\partial r_{\mu}} \left(r_{\mu}^{2} \frac{\partial q_{\mu}}{\partial r_{\mu}} \right) \qquad \begin{pmatrix} \text{initial and Boundary Conditions} \\ q_{\mu} = 0, t = 0 \\ \frac{\partial q_{\mu}}{\partial r_{\mu}} = 0, r_{\mu} = 0 \\ \frac{\partial q_{\mu}}{\partial r_{\mu}} = 0, r_{\mu} = 0 \\ q_{\mu} = \frac{Kq_{s}C_{M}^{\ n}(r_{M}, t)}{1 + KC_{M}^{\ n}(r_{M}, t)}, r_{\mu} = R_{\mu} \\ V(C_{0} - C) = M\overline{q} = V$$

$$\stackrel{=}{q} = \frac{3}{\rho R_M^3} \int_0^{R_M} \left[(1 - \varepsilon) \rho_s \overline{q}_\mu + \varepsilon C_M \right] r_M^2 dr_M$$

Data and Simulations (BPM)

Calculated Diffusivities (BPM)

Mesh Size	Density (g/cm³)	Porosity	D _μ /R _μ ² (×10 ⁷ sec ⁻¹)
200-270	1.964	0.38	6.05
170-200	1.983	0.35	6.31
80-170	1.975	0.30	6.73
50-80	1.986	0.31	6.93

Column Studies

The performance of a packed-bed column is usually evaluated in terms of

Breakthrough = effluent conc. is < 5% of influent conc.

No. of Bed $= \frac{\text{Volume of solution treated}}{\text{Volume of packed - bed}}$

HSDM-based Flow-Column Model

Column Equation

$$u\frac{\partial C}{\partial z} + \frac{\partial C}{\partial t} + \frac{1-\varepsilon}{\varepsilon}\frac{\partial q}{\partial t} \cdot \rho = 0$$

$$\rho \frac{\partial \overline{q}}{\partial t} = \frac{3k_f}{R} (C - C_s)$$

Particle Equation

$$\frac{\partial q}{\partial t} = \frac{D_i}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial q}{\partial r})$$
$$\overline{q} = \frac{3}{R^3} \int_0^R q r^2 dr$$

Initial and Boundary Conditions

$$C = 0, \overline{q} = 0, t = 0$$

 $C = C_0, z = 0$

Initial and Boundary Conditions q = 0, t = 0 $\frac{\partial q}{\partial r} = 0, r = 0$ $\rho D_i \frac{\partial q}{\partial r}\Big|_{r=R} = k_f (C - C_s), r = R$ $q\Big|_{r=R} = \frac{Kq_s C_s^{\ n}}{1 + KC_s^{\ n}}$

Effect of Flowrate

Effect of Feed Concentration

Effect of Particle Size

- The As(V) adsorption rate on conditioned, calcined LDH increases with decreasing particle size, while the adsorption capacity of LDH is independent of particle size.
- Mg-AI-CO₃-LDH show promising capacity for the removal of trace levels of As and Se from aqueous effluents.
- When HSDM is used to describe the experimental data, the estimated diffusivity values increase with increasing particle size, whereas BPM predicts diffusivity values independent of particle size.
- In packed-bed columns, breakthrough time increases upon decreasing the stream flow rate, feed concentration, adsorbent particle size and feed solution pH.

- Experiments with binary mixtures of As and Se
- Column experiments with real power-plant effluents
- Detailed analytical tests of adsorbents before and after exposure to the effluents
- Study of the safe disposal of spent adsorbents

The support of the U.S. Department of Energy is gratefully acknowledged.