

Syngas and Hydrogen Combustion: Ignition and Flame Propagation

Grant Number: DE-FG26-06NT42717

Development of Comprehensive Detailed and Reduced Reaction Mechanisms for Syngas and Hydrogen Combustion

> Principal Investigator: Chih-Jen Sung Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland, Ohio 44106

Collaborators: Hai Wang, *University of Southern California* Angela Violi, *University of Michigan*

University Coal Research Contractors Review Conference June 5-6, 2007

Combustion

Diagnostics

aborator

- This project aims to develop the tools necessary for the design of future synthesis-gas and hydrogen (SGH) fueled combustion turbines.
	- – Generate a detailed experimental database of SGH combustion at IGCC-like conditions.
	- – Investigate fundamental chemical kinetics of $\rm H_2\!/\!CO\!/\!O_2\!/\!H_2\!O\!/\!CO_2$ at pressures, temperatures, and concentrations typical of SGH combustion in gas turbines
	- – Develop detailed and reduced chemical mechanisms based on this database, capable of predicting NOx formation during SGH combustion.

- • Obtain benchmark experimental data for combustion characteristics of syngas
	- **Conterflow Burner Apparatus**
		- Laminar flame speeds
		- Extinction limits
		- Flame structure
	- **Rapid Compression Machine**
		- Ignition delays at elevated pressures
- • Develop comprehensive and computationally-efficient chemical models
	- Assessment of available kinetic mechanisms
	- Theoretical calculations to determine critical rate constants
	- –Mechanism optimization
	- –Mechanism simplification and reduction

Accomplishments - Year 1

aboratori

- •Autoignition of dry H_2 /CO mixtures at elevated pressures in a rapid compression machine.
- Assessment of kinetics of syngas combustion at elevated pressures using global uncertainty analysis methods.
- Reaction kinetics of CO+HO₂ *ab initio* calculations.
- 3 journal publications and 1 under review.
- \bullet Preliminary experimentation on autoignition of wet H_2/CO mixtures at elevated pressures in a rapid compression machine.
- Preliminary experimentation to determine combustion characteristics of wet H_2 /CO mixtures in a counterflow configuration.Combustion Diagnostics

- •Autoignition of Dry $H₂/CO$ Mixtures
	- Characterization of Rapid Compression Machine
	- Ignition Delay Results
	- "Brute Force" Sensitivity Analysis
	- Global Uncertainty Analysis
- Reaction Kinetics of $CO+HO_2 \rightarrow CO_2 + OH$: *ab initio* Study and Master Equation Modeling
- Laminar Flame Speeds of Wet H_2/CO Mixtures with Preheat
	- Counterflow Burner Apparatus
	- Preliminary Results
- •Conclusions
- •Future Work

Combustion Diagnostics .aboratory

Autoignition of Dry H2/CO Mixtures

CASE WESTERN RESERVE UNIVERSITY

Rapid Compression Machine (RCM)

Features of the Present RCM

- RCM simulates a single compression stroke of an engine
	- simple and relatively easy to operate
- Adjustable stroke and clearance
- Fast compression (< 30 ms)
- Compressed pressure up to 60 bar
- Temperature 500 to 1100 K
- Elevated pressure condition is sustained up to 100 ms
- Optimized creviced piston for ensuring homogeneity of reacting mixture
- Optically accessible
- GC/MS and a fast sampling apparatus for species measurement
- Direct measurement of ignition delay
- Study of low-to-intermediate temperature chemistry

RCM Operation

Molar composition: $H_2/CO/O_2/N_2/Ar = 9.375/3.125/6.25/18.125/63.125$ Initial conditions – T_o = 298.7 K and P_o = 661 Torr

Combustion Diagnostics Laboratory

Comparison of RCM Experiment and Model

Simulation using CHEMKIN and SENKIN – with volume specified as a function of time in a homogeneous adiabatic system.

Dry H2/CO Experiments [−] Specifications \overline{A} SE

CASE WESTERN RESERVE UNIVERSITY

- Temperature (T_C) : 950 1100K
- Equivalence ratio (ϕ): 0.36 1.6
- Pressure (*P_C*): 15 50 bar
- R_{CO}=[CO]/([H₂]+[CO]): 0 0.80

Hydrogen Ignition Delay (1)

UNIVERSITY

ASE

• Stoichiometric hydrogen mixtures $(H_2/O_2/N_2/Ar = 2/1/2.9/10.1)$

Hydrogen Ignition Delay (2)

UNIVERSITY

 ASE

• H_2 ^{*O*}₂^{*/N*}₂*^{/Ar* = 12.5/6.25/18.125/63.125}

Reactions involving formation and consumption of HO 2and H 2O 2 are important.

Combustion

Diagnostics

aboratorv

Replacement of even small amounts of \mathbf{H}_{2} **with CO leads to an inhibition of autoignition.** Combustion

Diagnostics

aboratorv

H₂/CO Ignition Delay (2)

CASE WESTERN RVE UNIVERSITY

The inhibition effect of CO addition is seen to be much more pronounced at higher pressures.

> **Combustion** Diagnostics aboratory

H ²/CO Ignition Delay (3)

- Existing mechanisms fail to describe the inhibition effect of CO addition.
- From mechanisms, inhibition effect of CO is not observed until it constitutes 80% of the total fuel mole fraction.

(H2+CO)/O 2/N2/Ar = 12.5/6.25/18.125/63.125

CO+HO ²=CO ²+OH appears to be the primary reaction responsible for the mismatch of experimental and calculated ignition delays.

- • "Brute force" local sensitivity analysis is a useful linear analysis, but this cannot reveal interactions between kinetic parameter values.
- Uncertainties have to be assigned to all relevant parameters and the response to variations within the assigned ranges must be tested.
- Global, non-linear, uncertainty analysis which simultaneously considers variations in all kinetic parameters is required to interpret the origins of the discrepancy (e.g. Morris-one-at-atime and Monte-Carlo methods).

in collaboration with Prof. J. F. Griffiths, University of Leeds

- The overall importance ranking of reactions is determined by the absolute mean perturbation of the predicted ignition delay across all simulations when rate parameters are varied in a prescribed way within their ranges of uncertainty.
- The standard deviation reflects non-linear effects, i.e. the extent to which the sensitivity of the ignition delay may change if other parameters are adjusted.

Morris Analysis (2)

CASE WESTERN UNIVERSITY

0.8CO + 0.20H 2 at 50 bar and1040 K using 76 irreversible reaction scheme (Davis *et al.***, 2005)**

Monte Carlo Analysis (2)

Relationship of various values of k of CO+HO 2 with predicted ignition delays

Conclusions from

Global Uncertainty Analysis

Diagnostics

aboratori

- •The currently accepted parameter values for $CO + HO₂$ are obviously not right.
- Log $A < -11$ would fix it but the present analysis does not permit us to do more than indicate that the overall reaction rate is too fast.
- This constraint arises from the uncertainty in other rate parameters that gives the scatter in the predicted ignition delays – which is problem for any model validation using ignition delay data.
- Corrected parameters cannot be generated for this reaction solely from ignition delay evaluations
- Direct experimental or theoretical approaches are required to determine the rate parameters.Combustion

Reaction Kinetics of $\bm{CO+HO}_2\rightarrow\bm{CO}_2+\bm{OH}$ *ab initio Study and Master Equation Modeling*

CASE WESTERN RESERVE UNIVERSITY

Combustion **Diagnostics** Laboratory **SE WESTERN RESERVE UNI**

Diagnostics

- Prior theoretical efforts are insufficient to ensure an accurate rate coefficient.
- In all cases, the hindered internal rotations in the HOOC•O adduct and the critical geometries were inadequately treated.
- The complexity of the potential energy surface due to the *trans*- and *cis*-conformers and their mutual isomerization was not considered.
- In addition, the calculations of the potential energy barriers may not be sufficiently reliable to obtain accurate rate constant values.Combustion

- A more detailed analysis of the potential energy surface of CO+HO_2 reaction using several high-level quantum chemistry methods.
- Our best estimates for the saddle point energies are then incorporated in transition state theory simulations that consider the full complexity of the hindered rotational motions.
- Furthermore, the possibility of collisional stabilization and the dissociation of the adduct back to $CO + HO₂$ • along the *trans* pathway is examined via master equation simulations.

Quantum Chemistry Calculation

•CCSD(T)/CBS energy (Halkier, 1998)

≈ ⁺ [×][⎡] [−] [⎤] [⎢] ⎥ ⎣ [⎦] CCSD(T)/CBS CCSD(T)/cc-pVQZ CCSD(T)/cc-pVQZ CCSD(T)/cc-pVTZ 2737 *E E EE*

• FCC/CBS energy (He, 2000)

Basis set correction

FCC/CBS \sim LCCSD(T)/CBS $\pm \frac{1}{5}$ A | LCCSD(T)/cc-pVTZ $^{-}$ LCCSD/cc-pVTZ 1 5 $E_{\text{FCC/CBS}} \approx E_{\text{CCSD(T)/CBS}} + \frac{1}{5} \times \left[E_{\text{CCSD(T)/cc-pVTZ}} - E_{\text{CCSD/cc-pVTZ}} \right]$

Configuration Interaction truncation error

•Energies (kcal/mol) at 0 K relative to $CO + HO₂$

Potential Energy Surface

CASE UNIVERSITY

ASE

• $CO+HO_2 \rightarrow$ products (CCSD(T)/CBS//CCSD(T)/cc-pVTZ, kcal/mol)

Internal Rotation

E UNIVERSITY CASE WESTERN R

•Asymmetric characteristics

 $\frac{1}{1}$ J $(i-1)\pi/2$

Combustion Diagnostics Laboratory

1.400

0.969

żo

1.758

•Hindered internal rotation contributions

 \bullet Total density of states \mathscr{A} **E**)= $\int_{0}^{E} \rho_{\bf{a}}(E)\rho_{\bf{a}}(E-\bf{r})$

 \bullet At lower level approximation

$$
I^{(2,n)} = \frac{I_L^{(1,n)} I_R^{(1,n)}}{I_L^{(1,n)} + I_R^{(1,n)}}
$$

 \bullet At higher level approximation (East and Radom, 1997)

$$
I^{(3,4)} = I^{(1,1)} - \sum_{i=1}^{3} \left[\frac{\left(\alpha_{ij} U \right)^2}{m_L + m_R} + \frac{\beta_i^2}{I_i} \right]
$$

Combustion Diagnostics .aboratory

 \bullet Effects of internal rotor and *I* treatment on k (cm³/mol·s)

Laboratory

CASE WESTERN RESE RVE UNIVERSITY

- No pressure dependence up to 500 atm.
- Supports the notion advanced in RCM studies that the literature rate values are too large. Combustion **Diagnostics**

Sources of Uncertainty:

- TS1, TS3 barrier: ± 1 kcal/mol
	- Internal rotation barrier: ± 1 kcal/mol
		- State counting: 50%

Rate constant Uncertainty:

- 300 K, a factor of 8;
- 1000 K, a factor of 2;
- 2000 K, a factor of 1.7.
- **The error bars reject almost all of the rate values reported in earlier studies.**

Molar composition: *(H2+CO)/O 2/N2/Ar* $=12.5/6.25/18.125/63.125.$

- Dashed lines: Model of Davis *et al.* (2005)
	- Solid lines: updated model.

1. CO+HO₂=CO₂+OH (this work) 2. CO+OH=CO₂+H (Joshi and Wang) 3. HO ²+OH=H ²O+O 2 (Sivaramakrishnan *et al.*)

Combustion

Diagnostics

aboratory

• The current theoretical analysis supports lower rate value for $CO+HO_2=CO_2+OH$.

 \bullet Recommended rate expression:

$$
k\Bigl(cm^3/mol\!\cdot\! s \Bigr)=1.57\!\times\!10^5 T^{2.18} e^{-9030/T}
$$

(300≤*T*≤2500 K, *P*≤ 500 atm)

Laminar Flame Speeds of Wet H2/CO Mixtures with Preheat

CASE WESTERN RESERVE UNIVERSITY

Counterflow Twin Flames

CASE WESTERN RESERVE UNIVERSITY

DPIV Measurement

Linear Extrapolation

CASE WESTE φ=0.7, R_{CO}=0.95, ξ_{H2O}=25%, T_u=323 K φ=0.7, R_{CO}=0.95, ξ_{H2O}=15%, T_u=323 K 100 100 Reference Flame Speed (cm/s) Reference Flame Speed (cm/s) Reference Flame Speed (cm/s) Reference Flame Speed (cm/s) 80 80 6060 Laminar Flame Speed Laminar Flame Speed 4040 2020 000 200 400 600 8000 200 400 600 800Stretch Rate (s-¹) Stretch Rate (s-¹)

 $\xi_{\rm H2O}\!\!=\!\![\rm H_2O]/\!([\rm H_2]\!\!+\!\![CO]\!\!+\!\![\rm H_2O])$

Effect of Water Addition onFlame Propagation

CASE WESTERN

Fixed Volumetric Flow Rateφ=0.7, R_{co}=0.75, T_u=323 K

 $\xi_{H2O} = 25\%$

laminar flame speed decreases with increasing ξ_{H2O}

Fixed Volumetric Flow Rateφ=1.3, R_{cO}=0.95, T_u=323 K

 $\xi_{H2O} = 0\%$

ξ $_{H2O}$ =25%

laminar flame speed increases with increasing ξ_{H2O}

- Need comprehensive detailed and reduced mechanisms for syngas and hydrogen combustion.
- • Discrepancies between simulations and the newly obtained experimental data are discussed.
- • Comparison of experimental and computational results will enable the re-evaluation and optimization of current mechanisms.
- The lack of accurate/meaningful experimental data has in the past hampered the progress in the development of kinetic mechanism.
	- Need extensive benchmark data of high fidelity.

Future Work

Diagnostics

aboratory

- Obtain detailed experimental data for combustion characteristics of SGH mixtures using rapid compression machine and counterflow burner.
	- Effects of CO₂ and H₂O addition on the autoignition of H₂/CO mixtures.
	- Measurements of laminar flame speeds and strain-induced extinction limits of premixed SGH flames.
- Assess kinetic mechanism against the newly acquired experimental data, thereby enabling re-evaluation and optimization of rate constants and mechanism.
- Conduct *ab initio* quantum chemistry calculation and master equation modeling for certain key reactions, including $HO_2^+HO_2^- \rightarrow H_2O_2^+O_2$ and $HO_2+OH\rightarrow H_2O+O_2.$
	- Notable influence on SGH oxidation rates under high-pressure, low-tointermediate temperature conditions.
	- Complex temperature and pressure dependences that cannot be easily resolved through mechanism optimization.Combustion

• Work supported by DOE/NETL

Contract Monitor: *Rondle E. Harp*.

• Former and current graduate students:

Gaurav Mittal, Kamal Kumar, Xiaoqing You, and Apurba Das.

