

Syngas and Hydrogen Combustion: Ignition and Flame Propagation

Grant Number: DE-FG26-06NT42717

Development of Comprehensive Detailed and Reduced Reaction Mechanisms for Syngas and Hydrogen Combustion

> Principal Investigator: Chih-Jen Sung Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland, Ohio 44106

Collaborators: Hai Wang, University of Southern California Angela Violi, University of Michigan

University Coal Research Contractors Review Conference June 5-6, 2007

Diagnostics

aborator

- This project aims to develop the tools necessary for the design of future synthesis-gas and hydrogen (SGH) fueled combustion turbines.
 - Generate a detailed experimental database of SGH combustion at IGCC-like conditions.
 - Investigate fundamental chemical kinetics of $H_2/CO/O_2/N_2/H_2O/CO_2$ at pressures, temperatures, and concentrations typical of SGH combustion in gas turbines
 - Develop detailed and reduced chemical mechanisms based on this database, capable of predicting NOx formation during SGH combustion.

- Obtain benchmark experimental data for combustion characteristics of syngas
 - Conterflow Burner Apparatus
 - Laminar flame speeds
 - Extinction limits
 - Flame structure
 - Rapid Compression Machine
 - Ignition delays at elevated pressures
- Develop comprehensive and computationally-efficient chemical models
 - Assessment of available kinetic mechanisms
 - Theoretical calculations to determine critical rate constants
 - Mechanism optimization
 - Mechanism simplification and reduction

Accomplishments - Year 1

- Autoignition of dry H_2/CO mixtures at elevated pressures in a rapid compression machine.
- Assessment of kinetics of syngas combustion at elevated pressures using global uncertainty analysis methods.
- Reaction kinetics of $CO+HO_2 ab$ initio calculations.
- 3 journal publications and 1 under review.
- Preliminary experimentation on autoignition of wet H_2/CO mixtures at elevated pressures in a rapid compression machine.
- Preliminary experimentation to determine combustion characteristics of wet H_2/CO mixtures in a counterflow configuration.

CASE WESTERN RESERVE UNIVERSITY

- Autoignition of Dry H_2/CO Mixtures
 - Characterization of Rapid Compression Machine
 - Ignition Delay Results
 - "Brute Force" Sensitivity Analysis
 - Global Uncertainty Analysis
- Reaction Kinetics of CO+HO₂ → CO₂ + OH: *ab initio* Study and Master Equation Modeling
- Laminar Flame Speeds of Wet H₂/CO Mixtures with Preheat
 - Counterflow Burner Apparatus
 - Preliminary Results
- Conclusions
- Future Work

Combustion Diagnostics Laboratory

Autoignition of Dry H₂/CO Mixtures

Rapid Compression Machine (RCM)

Combustion Diagnostics Laboratory

Features of the Present RCM

- RCM simulates a single compression stroke of an engine
 - simple and relatively easy to operate
- Adjustable stroke and clearance
- Fast compression (< 30 ms)
- Compressed pressure up to 60 bar
- Temperature 500 to 1100 K
- Elevated pressure condition is sustained up to 100 ms
- Optimized creviced piston for ensuring homogeneity of reacting mixture
- Optically accessible
- GC/MS and a fast sampling apparatus for species measurement
- Direct measurement of ignition delay
- Study of low-to-intermediate temperature chemistry

RCM Operation

Molar composition: $H_2/CO/O_2/N_2/Ar = 9.375/3.125/6.25/18.125/63.125$ Initial conditions – $T_0 = 298.7$ K and $P_0 = 661$ Torr

Combustion Diagnostics Laboratory CASE WESTERN RESERVE UNIVERSITY

Comparison of RCM Experiment and Model

CASE WESTERN RESERVE UNIVERSITY

Simulation using CHEMKIN and SENKIN – with volume specified as a function of time in a homogeneous adiabatic system.

CASE Dry H₂/CO Experiments – Specifications

- Temperature (T_C) : 950 1100K
- Equivalence ratio (ϕ): 0.36 1.6
- Pressure (P_C) : 15 50 bar
- $R_{CO} = [CO]/([H_2] + [CO]): 0 0.80$

Mixture #	φ	R _{CO}	\mathbf{H}_{2}	CO	O_2	N_2	Ar
1	1.0	0	12.5%	0%	6.25%	18.125%	63.125%
2	1.0	0.25	9.375%	3.125%	6.25%	18.125%	63.125%
3	1.0	0.50	6.25%	6.25%	6.25%	18.125%	63.125%
4	1.0	0.65	4.375%	8.125%	6.25%	18.125%	63.125%
5	1.0	0.80	2.5%	10%	6.25%	18.125%	63.125%
6	0.36	0.25	6.667%	2.222%	12.345%	14.418%	64.348%
7	0.72	0.25	6.667%	2.222%	6.173%	21.586%	63.352%
8	1.0	0.25	6.667%	2.222%	4.444%	23.600%	63.067%
9	1.3	0.25	6.667%	2.222%	3.419%	24.782%	62.910%
10	1.6	0.25	6.667%	2.222%	2.777%	25.511%	62.823%

Hydrogen Ignition Delay (1)

CASE WESTERN RESERVE UNIVERSITY

SE

• Stoichiometric hydrogen mixtures ($H_2/O_2/N_2/Ar = 2/1/2.9/10.1$)

Hydrogen Ignition Delay (2)

CASE WESTERN RESERVE UNIVERSITY

ASE

• $H_2/O_2/N_2/Ar = 12.5/6.25/18.125/63.125$

ASE WESTERN RESERVE UNIVERSITY

Reactions involving formation and consumption of HO_2 and H_2O_2 are important.

Combustion

Diagnostics

aboratory

H₂/CO Ignition Delay (1)

Diagnostics

aboratory

CASE WESTERN RESERVE UNIVERSITY

Replacement of even small amounts of H₂ with CO leads to an inhibition of autoignition.

H₂/CO Ignition Delay (2)

CASE WESTERN RESERVE UNIVERSITY

The inhibition effect of CO addition is seen to be much more pronounced at higher pressures.

> Combustion Diagnostics Laboratory CASE WESTERN RESERVE UNIVERSITY

H₂/CO Ignition Delay (3)

CASE WESTERN RESERVE UNIVERSITY

- Existing mechanisms fail to describe the inhibition effect of CO addition.
- From mechanisms, inhibition effect of CO is not observed until it constitutes 80% of the total fuel mole fraction.

 $(H_2 + CO)/O_2/N_2/Ar = 12.5/6.25/18.125/63.125$

CO+HO₂=CO₂+OH appears to be the primary reaction responsible for the mismatch of experimental and calculated ignition delays.

- "Brute force" local sensitivity analysis is a useful linear analysis, but this cannot reveal interactions between kinetic parameter values.
- Uncertainties have to be assigned to all relevant parameters and the response to variations within the assigned ranges must be tested.
- Global, non-linear, uncertainty analysis which simultaneously considers variations in all kinetic parameters is required to interpret the origins of the discrepancy (e.g. Morris-one-at-a-time and Monte-Carlo methods).

in collaboration with Prof. J. F. Griffiths, University of Leeds

- The overall importance ranking of reactions is determined by the absolute mean perturbation of the predicted ignition delay across all simulations when rate parameters are varied in a prescribed way within their ranges of uncertainty.
- The standard deviation reflects non-linear effects, i.e. the extent to which the sensitivity of the ignition delay may change if other parameters are adjusted.

CASE

Morris Analysis (2)

CASE WESTERN RESERVE UNIVERSITY

0.8CO + 0.20H₂ at 50 bar and1040 K using 76 irreversible reaction scheme (Davis *et al.*, 2005)

Monte Carlo Analysis (2)

CASE WESTERN RESERVE UNIVERSITY

Relationship of various values of k of CO+HO₂ with predicted ignition delays

Conclusions from

Global Uncertainty Analysis

Diagnostics

aborator

- The currently accepted parameter values for $\text{CO} + \text{HO}_2$ are obviously not right.
- Log A < -11 would fix it but the present analysis does not permit us to do more than indicate that the overall reaction rate is too fast.
- This constraint arises from the uncertainty in other rate parameters that gives the scatter in the predicted ignition delays which is problem for any model validation using ignition delay data.
- Corrected parameters cannot be generated for this reaction solely from ignition delay evaluations
- Direct experimental or theoretical approaches are required to determine the rate parameters.

Reaction Kinetics of $CO+HO_2 \rightarrow CO_2 + OH$ ab initio Study and Master Equation Modeling

Diagnostics

- Prior theoretical efforts are insufficient to ensure an accurate rate coefficient.
- In all cases, the hindered internal rotations in the HOOC•O adduct and the critical geometries were inadequately treated.
- The complexity of the potential energy surface due to the *trans* and *cis*-conformers and their mutual isomerization was not considered.
- In addition, the calculations of the potential energy barriers may not be sufficiently reliable to obtain accurate rate constant values.

- A more detailed analysis of the potential energy surface of $CO+HO_2$ reaction using several high-level quantum chemistry methods.
- Our best estimates for the saddle point energies are then incorporated in transition state theory simulations that consider the full complexity of the hindered rotational motions.
- Furthermore, the possibility of collisional stabilization and the dissociation of the adduct back to CO + HO₂• along the *trans* pathway is examined via master equation simulations.

CASE Quantum Chemistry Calculation

CASE WESTERN RESERVE UNIVERSITY

• CCSD(T)/CBS energy (Halkier, 1998)

 $E_{\text{CCSD}(T)/\text{CBS}} \approx E_{\text{CCSD}(T)/\text{cc-pVQZ}} + \frac{27}{37} \times \left[E_{\text{CCSD}(T)/\text{cc-pVQZ}} - E_{\text{CCSD}(T)/\text{cc-pVTZ}} \right]$

• FCC/CBS energy (He, 2000)

Basis set correction

 $E_{\text{FCC/CBS}} \approx E_{\text{CCSD(T)/CBS}} + \frac{1}{5} \times \left[E_{\text{CCSD(T)/cc-pVTZ}} - E_{\text{CCSD/cc-pVTZ}} \right]$

Configuration Interaction truncation error

• Energies (kcal/mol) at 0 K relative to $CO + HO_2 \bullet$

Products/ transition state	G3B3	CCSD(T)/ cc-pVTZ	CCSD(T)/ cc-pVQZ ^a	CCSD(T)/ CBS	FCC/CBS	Literature value
CO ₂ +OH	-63.3	-59.9	-61.0	-61.8	-61.7	-61.6±0.1
HOOC•O	6.3	8.1	7.2	6.5	6.0	
TS1	18.3	18.8	18.3	17.9	17.3	
TS2	12.0	14.4	13.4	12.7	11.8	
TS3	19.3	19.9	19.3	18.9	18.2	
TS4	15.5	17.2	16.4	15.8	15.3	
$HC \bullet O + O_2$	33.3	33.1	33.7	34.1	34.0	33.6±0.1

Combustion Diagnostics Laboratory

Potential Energy Surface

CASE WESTERN RESERVE UNIVERSITY

ASE

• $CO+HO_2 \rightarrow products (CCSD(T)/CBS//CCSD(T)/cc-pVTZ, kcal/mol)$

Internal Rotation

- Asymmetric characteristics
- TS1↔TS3 **Potential Energy** V_{03} V₀₂ \dot{V}_{01} V₀₄ 1.149 1.758 1.150 TS₃ TS1 **TS1** 1.742 0.968 1.400 TS3 π/2 3π/2 0 2π 20 π 3 **TS1** Rotation Angle, ϕ 0.969 1.391 $Q_b(T) = \frac{1}{2\pi} \left(\frac{\pi k_B T}{B}\right)^{1/2} \sum_{i=1}^4 \int_{(i-1)\pi/2}^{i\pi/2} d\phi e^{-V/k_B T}$ Combustion Diagnostics Laboratory

CASE WESTERN RESERVE UNIVERSITY

• Hindered internal rotation contributions

$\rho_{b}(E) = \rho_{b1}(E) + \rho_{b2}$	$(E)+\rho_{b3}(E)+\rho_{b4}(E)$	Z)
--	---------------------------------	----

• Total density of states $\rho(B) = \int_0^E \rho_1(B) \rho_{H_1}(B-I) d$

• At lower level approximation

$$I^{(2,n)} = \frac{I_L^{(1,n)} I_R^{(1,n)}}{I_L^{(1,n)} + I_R^{(1,n)}}$$

• At higher level approximation (East and Radom, 1997)

$$I^{(3,4)} = I^{(1,1)} - \sum_{i=1}^{3} \left[\frac{\left(\alpha_{iy}U\right)^{2}}{m_{L} + m_{R}} + \frac{\beta_{i}^{2}}{I_{i}} \right]$$

Combustion Diagnostics Laboratory

• Effects of internal rotor and *I* treatment on $k (\text{cm}^3/\text{mol}\cdot\text{s})$

	Uarmonia	Lanmonia Enco noton		Hindered rotor			
<i>T</i> (K)	oscillator	with $I^{(3,4)}$	J (2,1)] (2,3)	I (3,4)		
500	2.1×10 ³	3.8×10 ⁴	2.9×10 ³	1.5×10^{3}	1.7×10 ³		
1000	5.6×10 ⁷	6.1×10 ⁸	1.1×10 ⁸	6.3×10 ⁷	6.5×10 ⁷		
1500	2.6×10 ⁹	2.1×10 ¹⁰	5.5×10 ⁹	3.4×10 ⁹	3.2×10 ⁹		
2000	2.2×10^{10}	1.4×10 ¹¹	4.7×10 ¹⁰	2.9×10 ¹⁰	2.7×10 ¹⁰		
2500	8.8×10 ¹⁰	4.6×10 ¹¹	1.9×10 ¹¹	1.2×10 ¹¹	1.1×10 ¹¹		

Results (2)

Laboratory

- No pressure dependence up to 500 atm.
- Supports the notion advanced in RCM studies that the literature rate values are too large.

Sources of Uncertainty:

- TS1, TS3 barrier: ± 1 kcal/mol
 - Internal rotation barrier: ± 1 kcal/mol
 - State counting: 50%

Rate constant Uncertainty:

- 300 K, a factor of 8;
- 1000 K, a factor of 2;
- 2000 K, a factor of 1.7.
- The error bars reject almost all of the rate values reported in earlier studies.

Molar composition: $(H_2+CO)/O_2/N_2/Ar$ =12.5/6.25/18.125/63.125.

- Dashed lines: Model of Davis et al. (2005) •
 - Solid lines: updated model.

1. $CO+HO_2=CO_2+OH$ (this work) 2. CO+OH=CO₂+H (Joshi and Wang) 3. HO₂+OH=H₂O+O₂ (Sivaramakrishnan *et al.*)

Combustion

Diagnostics

aborator

• The current theoretical analysis supports lower rate value for $CO+HO_2=CO_2+OH$.

• Recommended rate expression:

$$k(\text{cm}^3/\text{mol}\cdot\text{s}) = 1.57 \times 10^5 T^{2.18} e^{-9030/T}$$

 $(300 \le T \le 2500 \text{ K}, P \le 500 \text{ atm})$

Laminar Flame Speeds of Wet H₂/CO Mixtures with Preheat

Counterflow Twin Flames

DPIV Measurement

Linear Extrapolation

 $\phi=0.7, R_{CO}=0.95, \xi_{H2O}=25\%, T_{u}=323 \text{ K}$ $\phi=0.7, R_{CO}=0.95, \xi_{H2O}=15\%, T_{\mu}=323 \text{ K}$ Reference Flame Speed (cm/s) Reference Flame Speed (cm/s) Laminar Flame Speed Laminar Flame Speed Stretch Rate (s⁻¹) Stretch Rate (s⁻¹)

 $\xi_{\rm H2O} = [\rm H_2O] / ([\rm H_2] + [\rm CO] + [\rm H_2O])$

Effect of Water Addition on Flame Propagation

CASE WESTERN RESERVE UNIVERSITY

Fixed Volumetric Flow Rate $\phi=0.7$, $R_{CO}=0.75$, $T_u=323$ K

 $\xi_{H2O} = 25\%$

laminar flame speed <u>decreases</u> with increasing ξ_{H2O}

Fixed Volumetric Flow Rate $\phi=1.3$, R_{CO}=0.95, $T_u=323$ K

 $\xi_{H2O} = 0\%$

ξ_{H2O}=25%

laminar flame speed $\underline{increases}$ with increasing ξ_{H2O}

- Need comprehensive detailed and reduced mechanisms for syngas and hydrogen combustion.
- Discrepancies between simulations and the newly obtained experimental data are discussed.
- Comparison of experimental and computational results will enable the re-evaluation and optimization of current mechanisms.
- The lack of accurate/meaningful experimental data has in the past hampered the progress in the development of kinetic mechanism.
 - Need extensive benchmark data of high fidelity.

Future Work

Diagnostics

aborator

- Obtain detailed experimental data for combustion characteristics of SGH mixtures using rapid compression machine and counterflow burner.
 - Effects of CO_2 and H_2O addition on the autoignition of H_2/CO mixtures.
 - Measurements of laminar flame speeds and strain-induced extinction limits of premixed SGH flames.
- Assess kinetic mechanism against the newly acquired experimental data, thereby enabling re-evaluation and optimization of rate constants and mechanism.
- Conduct *ab initio* quantum chemistry calculation and master equation modeling for certain key reactions, including $HO_2+HO_2\rightarrow H_2O_2+O_2$ and $HO_2+OH\rightarrow H_2O+O_2$.
 - Notable influence on SGH oxidation rates under high-pressure, low-tointermediate temperature conditions.
 - Complex temperature and pressure dependences that cannot be easily resolved through mechanism optimization.

• Work supported by DOE/NETL

- Contract Monitor: *Rondle E. Harp.*

• Former and current graduate students:

Gaurav Mittal, Kamal Kumar, Xiaoqing You, and Apurba Das.

