
Syngas and Hydrogen Combustion:
Ignition and Flame Propagation

Grant Number: DE-FG26-06NT42717
Development of Comprehensive Detailed and Reduced Reaction Mechanisms for

Syngas and Hydrogen Combustion

Principal Investigator: Chih-Jen Sung
Department of Mechanical and Aerospace Engineering

Case Western Reserve University
Cleveland, Ohio 44106

Collaborators: Hai Wang, University of Southern California
Angela Violi, University of Michigan

University Coal Research Contractors Review Conference
June 5-6, 2007



Objectives

• This project aims to develop the tools necessary for 
the design of future synthesis-gas and hydrogen 
(SGH) fueled combustion turbines.
– Generate a detailed experimental database of SGH 

combustion at IGCC-like conditions.

– Investigate fundamental chemical kinetics of 
H2/CO/O2/N2/H2O/CO2 at pressures, temperatures, and 
concentrations typical of SGH combustion in gas turbines

– Develop detailed and reduced chemical mechanisms based 
on this database, capable of predicting NOx formation 
during SGH combustion.



Scope of Work

• Obtain benchmark experimental data for combustion 
characteristics of syngas
– Conterflow Burner Apparatus

• Laminar  flame speeds
• Extinction limits
• Flame structure

– Rapid Compression Machine
• Ignition delays at elevated pressures

• Develop comprehensive and computationally-efficient chemical 
models
– Assessment of available kinetic mechanisms
– Theoretical calculations to determine critical rate constants
– Mechanism optimization
– Mechanism simplification and reduction



Accomplishments - Year 1 

• Autoignition of dry H2/CO mixtures at elevated pressures 
in a rapid compression machine.

• Assessment of kinetics of syngas combustion at elevated 
pressures using global uncertainty analysis methods.

• Reaction kinetics of CO+HO2 − ab initio calculations.
• 3 journal publications and 1 under review.
• Preliminary experimentation on autoignition of wet H2/CO 

mixtures at elevated pressures in a rapid compression 
machine.

• Preliminary experimentation to determine combustion 
characteristics of wet H2/CO mixtures in a counterflow 
configuration.



Outline

• Autoignition of Dry H2/CO Mixtures
– Characterization of Rapid Compression Machine
– Ignition Delay Results
– “Brute Force” Sensitivity Analysis
– Global Uncertainty Analysis

• Reaction Kinetics of CO+HO2 → CO2 + OH: ab initio
Study and Master Equation Modeling

• Laminar Flame Speeds of Wet H2/CO Mixtures with 
Preheat
– Counterflow Burner Apparatus
– Preliminary Results

• Conclusions
• Future Work



Autoignition of Dry H2/CO Mixtures
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• RCM simulates a single compression stroke of an engine
– simple and relatively easy to operate

• Adjustable stroke and clearance
• Fast compression (< 30 ms)
• Compressed pressure up to 60 bar
• Temperature – 500 to 1100  K
• Elevated pressure  condition is sustained up to 100 ms
• Optimized creviced piston for ensuring homogeneity of reacting mixture
• Optically accessible
• GC/MS and a fast sampling apparatus for species measurement
• Direct measurement of ignition delay
• Study of low-to-intermediate temperature chemistry

Features of the Present RCM



RCM Operation
• Pneumatically driven • Hydraulically actuated and stopped



Reproducibility

Molar composition: H2/CO/O2/N2/Ar = 9.375/3.125/6.25/18.125/63.125
Initial conditions – T0 = 298.7 K and P0 = 661 Torr
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Comparison of
RCM Experiment and Model

Simulation using CHEMKIN and SENKIN – with volume specified 
as a function of time in a homogeneous adiabatic system.
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Dry H2/CO Experiments − Specifications

• Temperature (TC): 950 – 1100K
• Equivalence ratio (φ): 0.36 – 1.6

Mixture # φ RCO H2 CO O2 N2 Ar 

1 1.0 0 12.5% 0% 6.25% 18.125% 63.125% 

2 1.0 0.25 9.375% 3.125% 6.25% 18.125% 63.125% 

3 1.0 0.50 6.25% 6.25% 6.25% 18.125% 63.125% 

4 1.0 0.65 4.375% 8.125% 6.25% 18.125% 63.125% 

5 1.0 0.80 2.5% 10% 6.25% 18.125% 63.125% 

6 0.36 0.25 6.667% 2.222% 12.345% 14.418% 64.348% 

7 0.72 0.25 6.667% 2.222% 6.173% 21.586% 63.352% 

8 1.0 0.25 6.667% 2.222% 4.444% 23.600% 63.067% 

9 1.3 0.25 6.667% 2.222% 3.419% 24.782% 62.910% 

10 1.6 0.25 6.667% 2.222% 2.777% 25.511% 62.823% 

 

• Pressure (PC): 15 − 50 bar
• RCO=[CO]/([H2]+[CO]): 0 – 0.80



0

10

20

30

40

50

-15 -10 -5 0 5 10 15 20

Experimental
O'Conaire et al. (2004)
Davis et al. (2005)
Li et al. (2004)

Pr
es

su
re

 (b
ar

)

Time (ms)

T0 = 298 K

P0= 705.8 Torr
TC= 977 K

P0 = 640 Torr
TC = 1010.5 K

Hydrogen Ignition Delay (1)

• Stoichiometric hydrogen mixtures (H2/O2/N2/Ar = 2/1/2.9/10.1)



Hydrogen Ignition Delay (2)

• H2/O2/N2/Ar = 12.5/6.25/18.125/63.125
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“Brute Force” Sensitivity Analysis
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H2/CO Ignition Delay (1)
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H2/CO Ignition Delay (2)
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more pronounced at higher pressures.



H2/CO Ignition Delay (3)

(H2+CO)/O2/N2/Ar = 12.5/6.25/18.125/63.125
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• Existing mechanisms fail to 
describe the inhibition effect of 
CO addition.

• From mechanisms, inhibition 
effect of CO is not observed 
until it constitutes 80% of the 
total fuel mole fraction.
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“Brute Force” Sensitivity Analysis

CO+HO2=CO2+OH appears to be the primary reaction responsible 
for the mismatch of experimental and calculated ignition delays.



Global Uncertainty Analysis

• “Brute force” local sensitivity analysis is a useful linear 
analysis, but this cannot reveal interactions between kinetic 
parameter values.

• Uncertainties have to be assigned to all relevant parameters 
and the response to variations within the assigned ranges must 
be tested.

• Global, non-linear, uncertainty analysis which simultaneously 
considers variations in all kinetic parameters is required to 
interpret the origins of the discrepancy (e.g. Morris-one-at-a-
time and Monte-Carlo methods).

in collaboration with Prof. J. F. Griffiths, University of Leeds



Morris Analysis (1)

• The overall importance ranking of reactions is 
determined by the absolute mean perturbation of the  
predicted ignition delay across all simulations when 
rate parameters are varied in a prescribed way within 
their ranges of uncertainty.

• The standard deviation reflects non-linear effects, i.e. 
the extent to which the sensitivity of the ignition delay 
may change if other parameters are adjusted.



Morris Analysis (2)
0.8CO + 0.20H2 at 50 bar and1040 K using 76 irreversible reaction 
scheme (Davis et al., 2005)
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  REACTION      Range of log A
     (cm molecule s) 

CO+HO2 → CO2+OH (-10.702 → -9.902)  

H+O2+M → HO2+M (-11.272 → -10.871)   

H+O2 → OH+O (-7.207 → -7.507) 

H2O2+M → 2OH+M (19.146 → 19.546) 

HO2+OH → H2O+O2 (-10.905 → -9.905)    

HO2+H2 → H2O2+H (-19.667 → -19.047) 

  



Monte Carlo Analysis (1)
Significance of k of CO+HO2 in predicting ignition delay
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Monte Carlo Analysis (2)

tign for log A = -10.3 and all other rate parameters are allowed to 
vary over their uncertainty ranges (s.d ~ + 60%)

tign for log A = -11 and all other rate 
parameters are allowed to vary over their 
uncertainty ranges (s.d ~ + 40%)

These variations arise even in a 76 

reaction scheme for which the data are 

generally “well known”.  BE WARNED!

Relationship of various values of k of CO+HO2 with predicted ignition delays 



Conclusions from
Global Uncertainty Analysis

• The currently accepted parameter values for  CO + HO2 are 
obviously not right. 

• Log A < -11 would fix it but the present analysis does not 
permit us to do more than indicate that the overall reaction 
rate is too fast.

• This constraint arises from the uncertainty in other rate 
parameters that gives the scatter in the predicted ignition 
delays – which is problem for any model validation using 
ignition delay data. 

• Corrected parameters cannot be generated for this reaction 
solely from ignition delay evaluations

• Direct experimental or theoretical approaches are required to 
determine the rate parameters.



Reaction Kinetics of
CO+HO2 → CO2 + OH 

ab initio Study and Master Equation Modeling



Motivation (1)
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Motivation (2)

• Prior theoretical efforts are insufficient to ensure an 
accurate rate coefficient.

• In all cases, the hindered internal rotations in the 
HOOC•O adduct and the critical geometries were 
inadequately treated.

• The complexity of the potential energy surface due 
to the trans- and cis-conformers and their mutual 
isomerization was not considered.

• In addition, the calculations of the potential energy 
barriers may not be sufficiently reliable to obtain 
accurate rate constant values.



Approach

• A more detailed analysis of the potential energy 
surface of CO+HO2 reaction using several high-level 
quantum chemistry methods.

• Our best estimates for the saddle point energies are 
then incorporated in transition state theory 
simulations that consider the full complexity of the 
hindered rotational motions. 

• Furthermore, the possibility of collisional
stabilization and the dissociation of the adduct back 
to CO + HO2• along the trans pathway is examined 
via master equation simulations.



Quantum Chemistry Calculation
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• CCSD(T)/CBS energy (Halkier, 1998)

• FCC/CBS energy (He, 2000)
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CCSD(T)/
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CCSD(T)/
CBS 

FCC/CBS Literature 
value 

CO2+OH -63.3 -59.9 -61.0 -61.8 -61.7 -61.6±0.1 
HOOC•O 6.3 8.1 7.2 6.5 6.0  

TS1 18.3 18.8 18.3 17.9 17.3  
TS2 12.0 14.4 13.4 12.7 11.8  
TS3 19.3 19.9 19.3 18.9 18.2  
TS4 15.5 17.2 16.4 15.8 15.3  

HC•O+O2 33.3 33.1 33.7 34.1 34.0 33.6±0.1 
 

• Energies (kcal/mol) at 0 K relative to CO + HO2•
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Internal Rotation
• Asymmetric characteristics
• TS1↔TS3 
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Density of States
• Hindered internal rotation contributions

( ) ( ) ( ) ( ) ( )1 2 3 4h h h h hE E E E Eρ ρ ρ ρ ρ= + + +

• Total density of states



Treatment of the Moment of Inertia

• At lower level approximation 

• At higher level approximation (East and Radom, 
1997)
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• Effects of internal rotor and I  treatment on k (cm3/mol·s)

T(K)
Harmonic 
oscillator

Free rotor
with I(3,4)

Hindered rotor

I(2,1) I(2,3) I(3,4)

500 2.1×103 3.8×104 2.9×103 1.5×103 1.7×103

1000 5.6×107 6.1×108 1.1×108 6.3×107 6.5×107

1500 2.6×109 2.1×1010 5.5×109 3.4×109 3.2×109

2000 2.2×1010 1.4×1011 4.7×1010 2.9×1010 2.7×1010

2500 8.8×1010 4.6×1011 1.9×1011 1.2×1011 1.1×1011

Results (1)



Results (2)

• No pressure dependence up to 500 atm. 
• Supports the notion advanced in RCM studies that the literature rate values are too 

large.
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Uncertainty Analysis
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Sources of Uncertainty:

• TS1, TS3 barrier: ± 1 kcal/mol

• Internal rotation barrier: ± 1 
kcal/mol

• State counting: 50%

Rate constant Uncertainty:

• 300 K, a factor of 8;

• 1000 K, a factor of 2;

• 2000 K, a factor of 1.7.

• The error bars reject almost all of the rate values 
reported in earlier studies.



Modeling vs. RCM Experiments

Molar composition: (H2+CO)/O2/N2/Ar
=12.5/6.25/18.125/63.125.
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Summary

• The current theoretical analysis supports lower rate 
value for CO+HO2=CO2+OH.

• Recommended rate expression:

( )3 5 2.18 9030cm mol s 1.57 10 Tk T e−⋅ = ×

(300≤T≤2500 K, P≤ 500 atm)



Laminar Flame Speeds of
Wet H2/CO Mixtures with Preheat



Counterflow Twin-Flame Configuration
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DPIV System for Velocity Measurement

 

Burner  
Laser Head 

Gemini PIV-Nd:YAG Dual Lasers 
15 Hz repetition rate  
120 mJ/pulse at 532 nm  
3-5 ns pulse width 

Dantec HiSense CCD  
Camera 
1280×1024 pixels 
6.7 μm ×6.7 μm 
9 frames/sec 

Dantec PIV 2100 
Processor 



DPIV Measurement
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Linear Extrapolation
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Effect of Water Addition on
Flame Propagation

Fixed Volumetric Flow Rate
φ=1.3, RCO=0.95, Tu=323 K

Fixed Volumetric Flow Rate
φ=0.7, RCO=0.75, Tu=323 K

ξH2O=0%

ξH2O=25%

ξH2O=0%

ξH2O=25%

laminar flame speed decreasesdecreases with 
increasing ξH2O

laminar flame speed increasesincreases with 
increasing ξH2O



Conclusions

• Need comprehensive detailed and reduced mechanisms for 
syngas and hydrogen combustion.

• Discrepancies between simulations and the newly obtained 
experimental data are discussed.

• Comparison of experimental and computational results will 
enable the re-evaluation and optimization of current 
mechanisms.

• The lack of accurate/meaningful experimental data has in the 
past hampered the progress in the development of kinetic 
mechanism.
– Need extensive benchmark data of high fidelity.



Future Work

• Obtain detailed experimental data for combustion characteristics of SGH
mixtures using rapid compression machine and counterflow burner.

– Effects of CO2 and H2O addition on the autoignition of H2/CO mixtures.
– Measurements of laminar flame speeds and strain-induced extinction limits of 

premixed SGH flames. 

• Assess kinetic mechanism against the newly acquired experimental data, 
thereby enabling re-evaluation and optimization of rate constants and 
mechanism. 

• Conduct ab initio quantum chemistry calculation and master equation 
modeling for certain key reactions, including HO2+HO2→H2O2+O2 and 
HO2+OH→H2O+O2.

– Notable influence on SGH oxidation rates under high-pressure, low-to-
intermediate temperature conditions.

– Complex temperature and pressure dependences that cannot be easily resolved 
through mechanism optimization.
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