Closures for Coarse-Grid Simulation of Fluidized Gas-Particle Flows

> S. Sundaresan Princeton University

DE-PS26-05NT42472-11 Ronald Breault, Project Manager

2007 Contractors review Meeting, Pittsburgh June 5, 2007: 1:25 PM – 2:00 PM Grand Ball Room 5, Session A

Outline

- The Problem and Project Objectives
- Year 1 Goals
- Principal results from Year 1
- Summary
- Outlook for Years 2 and 3

Advanced Coal Gasification Technology

Chris Guenther, NETL

DOE – NETL; KBR; Southern Co; Siemens – Westinghouse Electric Power Res. Inst.; Peabody Holding Co.; Southern Res. Inst.

Characteristics of flows in turbulent fluidized beds & fast fluidized beds

- Up to ~ 30 vol% particles, with particle size distribution
- Persistent density and velocity fluctuations
 - Wide range of spatial scales
 - Wide range of frequencies
 - Macroscopically inhomogeneous structures, such as radial segregation of particles in risers (core-annular flow)
- Particle-particle collisions
- Too many particles to track individually
- Model in terms of local-average variables in locallyaveraged equations of motion ("two-fluid models")

Solids

Fluid

Solids

Fluid

~ (

1

$$\frac{\partial (\rho_s \phi_s)}{\partial t} + \nabla \cdot (\rho_s \phi_s u_s) = 0$$

$$\frac{\partial (\rho_f \phi_f)}{\partial t} + \nabla \cdot (\rho_f \phi_f u_f) = 0$$
Continuity equations
$$\frac{\partial (\rho_f \phi_f)}{\partial t} + \nabla \cdot (\rho_s \phi_s u_s u_s) = -\nabla \cdot \sigma_s \qquad -\phi_s \nabla \cdot \sigma_f \qquad + f \qquad + \rho_s \phi_s g$$
inertia
solid phase
effective
buoyancy
interphase
gravity
$$\frac{\partial}{\partial t} (\rho_f \phi_f u_f) + \nabla \cdot (\rho_f \phi_f u_f u_f) = \qquad -\phi_f \nabla \cdot \sigma_f \qquad - f \qquad + \rho_f \phi_f g$$

Readily extended to binary particle mixtures

Inter-phase force – due to <u>gas-particle</u> drag (Wen & Yu, 1966)

Solids
$$\frac{\partial}{\partial t} (\rho_s \phi_s \boldsymbol{u}_s) + \nabla \cdot (\rho_s \phi_s \boldsymbol{u}_s \boldsymbol{u}_s) = -\nabla \cdot \boldsymbol{\sigma}_s \qquad -\phi_s \nabla \cdot \boldsymbol{\sigma}_f \qquad + \boldsymbol{f} \qquad + \rho_s \phi_s \boldsymbol{g}$$

$$\frac{\text{solid phase}}{\text{stress}} \qquad \frac{\text{effective}}{\text{buoyancy}} \qquad \text{interphase}$$

$$\frac{\partial}{\partial t} (\rho_f \phi_f \boldsymbol{u}_f) + \nabla \cdot (\rho_f \phi_f \boldsymbol{u}_f \boldsymbol{u}_f) = \qquad -\phi_f \nabla \cdot \boldsymbol{\sigma}_f \qquad - \boldsymbol{f} \qquad + \rho_f \phi_f \boldsymbol{g}$$

Mass loading of particles is high and the deviatoric stress in the gas phase plays virtually no role

Solids
$$\frac{\partial}{\partial t} (\rho_s \phi_s \boldsymbol{u}_s) + \nabla \cdot (\rho_s \phi_s \boldsymbol{u}_s \boldsymbol{u}_s) = -\nabla \cdot \boldsymbol{\sigma}_s \qquad -\phi_s \nabla \cdot \boldsymbol{\sigma}_f \qquad + \boldsymbol{f}_{drag} \qquad + \rho_s \phi_s \boldsymbol{g}$$

$$\frac{\text{solid phase}}{\text{stress}} \qquad \frac{\text{effective}}{\boldsymbol{b} \boldsymbol{u} \boldsymbol{o} \boldsymbol{y} \boldsymbol{a} \boldsymbol{n} \boldsymbol{c} \boldsymbol{y}} \qquad \text{drag}$$
Fluid
$$\frac{\partial}{\partial t} (\rho_f \phi_f \boldsymbol{u}_f) + \nabla \cdot (\rho_f \phi_f \boldsymbol{u}_f \boldsymbol{u}_f) = \qquad -\phi_f \nabla \cdot \boldsymbol{\sigma}_f \qquad - \boldsymbol{f}_{drag} \qquad + \rho_f \phi_f \boldsymbol{g}$$

Model particle phase stress through the kinetic theory of granular materials – augment the system with an additional equation for the fluctuation energy

Solids $\frac{\partial}{\partial t} (\rho_s \phi_s \boldsymbol{u}_s) + \nabla \cdot (\rho_s \phi_s \boldsymbol{u}_s \boldsymbol{u}_s) = -\nabla \cdot \boldsymbol{\sigma}_s \qquad -\phi_s \nabla p_f \qquad + \boldsymbol{f}_{drag} \qquad + \rho_s \phi_s \boldsymbol{g}$ solid phase effective drag Fluid $\frac{\partial}{\partial t} (\rho_f \phi_f \boldsymbol{u}_f) + \nabla \cdot (\rho_f \phi_f \boldsymbol{u}_f \boldsymbol{u}_f) = \qquad -\phi_f \nabla p_f \qquad - \boldsymbol{f}_{drag} \qquad + \rho_f \phi_f \boldsymbol{g}$

e.g., see Gidaspow (1994) Plus, boundary conditions

Solution of discretized form of the kinetic theory based two-fluid model

Gas vel = 6 m/s Solids flux = 220 kg/m2.s What I get

What I expect based on experimental data

30 m tall

76 cm channel width

75µm particles

2 cm grid

2-D simulations

FCC particles in air; 16cm x 32 cm Simulations using MFIX {www.mfix.org}

Snapshots of particle volume fraction fields – kinetic theory based two-fluid model. Red color indicates regions of high particle volume fractions.

FCC particles in air; 16cm x 32 cm Simulations using MFIX {www.mfix.org}

- Fine structures affect effective fluid-particle interaction force and stresses
- Do we really want to resolve them?

Project Objective: Coarse-grained equations

Multiphase flow computations via two-fluid models

Reaction engineering need: Tools to probe macro-scale reactive flow features directly

Single-phase turbulent Flows

- Eddies with a wide range of length and time scales
- Too expensive to resolve all the eddies through Direct Numerical Simulation of the Navier-Stokes Equations
- Approach: Simulate the large eddies and model the smaller eddies – Large Eddy Simulations
- Filtered Navier Stokes equations
- Unresolved eddies effective transport properties: viscosity, diffusivities

Project Objectives

Develop models that allow us to focus on large-scale flow structures, without ignoring the possible consequence of the smaller scale structures.

- Construct constitutive models that filter over meso-scale structures that occur over length scales of 100 1000 particle diameters
- First do for the case of uniformly sized particles; then extend to binary mixtures
- Validate filtered models

Year 1 Goals

 Perform highly resolved 2-D and 3-D simulations of a kinetic theory based microscopic two-fluid model for uniformly sized particles, and construct closures for filtered drag coefficient, filtered particle phase pressure and filtered gas & particle phase viscosities.

Mechanics of Gas-Particle Flows

showing particlerich streamers Individual particles in gas

Approach: Probe details of mesoscale structures and develop effective coarse-grained equations

Kinetic Theory Based Model

0.6

0.5

-0.4

-0.3

0.2

0.1

Snapshot of the volume fraction field in a 2-D simulation

64 cm x 64 cm
512 x 512 grids
Average volume fraction of particles = 0.15
Periodic domain with a vertical pressure gradient to balance the weight of the suspension

Kinetic Theory Based Model

Power spectra

Meso-scale structures are statistically isotropic

Filtered drag coefficient decreases as filter size increases for both 2-D and 3-D

Variation of filtered drag coefficient with filter size 2-D

 $\rho_s g \phi_s$

Filtered drag coefficient 2-D

 $\rho_s g \phi_s$ $\left(1-\phi_{s}\right)^{n_{RZ,app}-2}$ $V_{t,app}$

21

Filtered particle phase pressure increases as filter size increases for both 2-D and 3-D

Filtered particle phase viscosity increases as filter size increases for both 2-D and 3-D

 $\mu_s g$

Comparison of the kinetic theory and filtered models

16x32 cm

Filtered twofluid model

16x32

32x64

64x128

128x256

Solution of discretized form of the microscopic and the filtered equations of motion

76 cm channel width

2 cm grid

30 m tall

Gas velocity = 6 m/s Solids flux = 220 kg/m2.s

Kinetic theory

Filtered equations

25

Solution of discretized form of the filtered equations of motion

Particle volume fraction

Vertical velocity

Summary

- Through highly resolved simulations of any two-fluid model, one can extract closures for the corresponding filtered two-fluid model. We have demonstrated this for a kinetic theory based two-fluid model.
- The drag law and the effective stresses which should be used in the filtered equations vary systematically with filter size.
- Two-dimensional and three-dimensional analyses yield similar statistical information.
- The test problem shows that the "filtered equations" approach has promise. But questions remain.

Project Goals: Years 2 and 3

- Develop scaling relations (Year 2)
- Examine the effect of bounding walls on the closures for the filtered quantities (years 2 & 3)
- Extend to binary mixtures (Years 2 and 3)
- Validate the filtered two-fluid model equations against experimental data (Year 3)

Acknowledgments

Yesim Igci and Arthur Andrews IV (Princeton University)

MFIX technical assistance Madhav Syamlal, Tom O'Brien (NETL) Sreekanth Pannala (ORNL) Sofiane Benyahia (Fluent)

Increasing Gas Velocity

Averaged equations of motion: uniformly sized particles

Local-average quantities

- Phase volume fractions, ϕ_s, ϕ_f
- Particle phase velocity, $\langle u_s \rangle$
- Fluid phase velocity, $\langle u_f \rangle$

$$\phi_s + \phi_f = 1$$

Assume:

 $d << \ell << L$

Does it make sense to talk of 2-D?

Energy flow in this problem

- Mean flow to fluctuating flow through fluidparticle slip forming small scale structures
- Coalescence and breakup of the structures
- This path exists in 2-D itself
- So, only quantitative differences between 2-D and 3-D, but not qualitative

Dependence of the filtered drag coefficient on resolution (2-D)

Filtered drag coefficient is independent of domain size (2-D)

Filtered drag coefficient is independent of domain size (3-D)

Filter Size = 2. dimensionless filtered drag coefficient 0.5 Blue: Domain size 0.4 = 8 x 8 x 8 (res: 32 x 32 x 32) 0.3 Green: Domain size $= 16 \times 16 \times 16$ (res: 64 x 64 x 64) 0.2 (dimensionless) 0.1 0 0.05 0.15 0.2 0.3 0.1 0.25 0.35 0 particle-phase volume fraction

36

Filter "data" generated through highly resolved simulations of two-fluid models

Snapshot of particle volume fraction fields obtained in highly resolved simulations of gas-particle flows. Red color indicates regions of high particle volume fractions. Squares of different sizes illustrate regions (i.e. filters) of different sizes over which averaging over the cells is performed.

Geldart's Classification

* Geldart, Powder Tech. 7, 285 (1973).

Kinetic Theory Model

Reconstruction $(\frac{a_{i,j}}{a_{\max}})^2 \ge 10^{-5}$ with

39

Flow behavior in fast fluidized bed/riser

Comparison of the kinetic theory and filtered models

64 cm x 64 cm, 512 x 512 grids