

Fly Ash Catalyzed Mercury Oxidation Chlorination Reactions

Sukh Sidhu

Graduate Student: Patanjali Varanasi

Environmental Engineering University of Dayton, 300 College Park Dayton, OH 45469-0132

Sidhu@udri.udayton.edu

2007 UCR HBCU/OMI Contractors Review Conference June 6, 2007

Introduction

- Strict EPA regulations for mercury control.
- Mercury control depends on the speciation of mercury.
- Gas phase reactions don't influence the effluent mercury speciation.
- Surface reactions in the post combustion zone control mercury speciation in stack gases.
- Surface composition plays an important role in mercury transformation.
- Study of mercury transformation in the post combustion zone is important to determine the speciation of mercury.

Possible Mercury Transformation Reactions in Combustor Cool Zone

> Oxidation

- Activated Carbon
- Fly Ash
- Surface Oxygen Complexes

Chlorination

- HCI (poor chlorinating agent)
- Conversion of HCI to Cl₂ (Deacon Reaction)
- Role of Metals

Role of Surfaces

- > Adsorption
- Dependence on carbon/calcium content
- Catalysis
- Dependence on metal content

Surfaces play an important role in mercury transformation reactions

Objectives

Understand how fly ash surface and composition of flue gas affect mercury speciation, partitioning, and reactions under post-combustion zone conditions.

Use this knowledge to develop a predictive tool that could estimate mercury speciation based on fly ash characteristics and composition of flue gas.

Experimental Approach

Our Experimental approach is based on previous surface catalyzed cool zone pollutant formation studies.

- Fly ash is a very complex surface do extensive characterization.
- Obtain preliminary data on mercury transformation reactions using coal fly ashes. Use these results to determine the range of catalytic activity of coal fly ashes in mercury transformation reactions.
- Correlate fly ash composition and flue gas composition with observed catalytic activity.
- Divide overall mercury transformation process into several manageable reaction systems. Use model fly ashes to validate observed correlations.

Elemental Analysis of Fly Ashes (EDS)

Ash	Mg	AI	Si	K	Са	Ti	Fe	0	S	Na	Р	SA (m2/gm)
1	0.59	14.8	26.64	2.69	0.75	1.38	4.84	47.72	0.35	0.19	0.06	6.98
2	0.5	15.4	26.72	2.96	1.18	1.07	3.81	47.84	0.22	0.32	0.05	2.62
3	0.92	14.27	26.29	2.86	2.32	0.92	4.17	47.32	0.28	0.56	0.11	2.35
4	2.53	10.11	19.72	0.86	14.94	1.08	4.08	43.83	0.86	1.26	0.73	0.95
5	0.42	12.67	21.79	1.95	2.59	0.63	14.43	43.97	0.72	0.57	0.26	0.7
6	0.64	11.4	21.59	1.56	2.7	0.94	13.69	44.04	1.44	1.92	0.08	0.82
7	0.44	11.91	19.57	1.69	2.64	1.11	14.05	43.85	2.22	2.2	0.33	0.78
8	0.46	12.09	22.17	1.98	2.2	0.71	14.53	43.87	0.77	1.16	0.08	0.55
9	0.41	10.86	21.01	1.57	2.36	0.9	14.09	44.1	2.22	2.34	0.14	0.86
10	0.44	11.48	21.24	1.85	2.45	0.73	16.15	43.21	0.86	1.38	0.21	0.54

High Resolution SEM of Ash Samples

15.0kV 8.8mm x2.00k SE(U) 6/2/2005

20.0um

6.98 m2/g

10 8kV 9 9mm x2 00k SE(U) 6/2/2005 2.62 m2/g

10.0um

Mercury Desorption

Mercury Desorption at 400°C

	SIL	00		4\N	SI	ys	S			
y Ash Sample	1	2	3	4	5	6	7	8	9	10
arbon Content (%)	13.5	4.0	4.3	1.6	1.5	1.4	1.2	1.4	1.3	1.

Λ

400 Temperature'C

500 600

700 800

300

200

100

0

0

100 200

Thermo Gravimetric and LECO Analysis of Original and Desorbed Fly Ash

LOI = 1- 1.5%

Ash 7 Original

Ash 7 Desorbed

Experimental System

Conversion of Mercury at Different Temperatures

Mercury Oxidation (same plant)

	Ash 5	Ash 6	Ash 7	Ash 8	Ash 9	Ash 10
Unit	2	2	2	2	2	2
Date	3/14/2006	3/15/2006	3/15/2006	3/16/2006	3/16/2006	3/17/2006
Time	13:00	8:55	13:00	8:00	13:00	8:00

Mercury Oxidation (Different Plants)

Impact of HCI Fly Ashes from Different Plants

Surface Catalyzed Transformation at Different Temperatures

Surface Catalyzed Transformations : Presence of HCI

> HCl not a good oxidizing agent

➢ But in the presence of surface it is converted to chlorine: Deacon Reaction 2HCI + 2O₂ → H₂O + Cl₂

Chlorine better oxidizing agent.

Surface Catalyzed Transformations : Presence of HCI

Surface Catalyzed Transformations : HCI vs HBr

Surface Catalyzed Transformations : HCI vs HBr

Surface Catalyzed Transformation: Presence of Water and HCI

Mercury Oxidation on Model Fly Ashes

Surface Catalyzed Transformations : Presence of HCI

Conclusions

- Desorption modifies the ash and also removes most of the extractable carbon
- Soot shows low adsorbtion and high oxidation capabilities and hence may be responsible for the oxidation properties of fly ash.
- Iron Oxide seems to be a good adsorber of mercury.
- Addition of HCl seems to increase mercury oxidation and inhibits mercury adsorption.
- Under the post-combustion zone conditions HCl is a slightly better oxidizing agent than HBr

Acknowledgement

This work is partially supported by DoE grant (DE-PS26-05NT42472) and Ohio Coal Development Office.

Mercury Chlorination (same plant)

Data Analysis and Modeling

 $\begin{array}{c} Hg^{0}(g) + X(g)(Cl_{2} \text{ or } O_{2}) \\ Hg^{0}(s) + X(g)(Cl_{2} \text{ or } O_{2}) \\ Hg^{0}(g) + X(s)(Cl \text{ or } O) \\ Hg^{0}(s) + X(s)(Cl \text{ or } O) \\ Hg^{+2}X(s)(cl \text{ or } O) \\ Hg^{+2}X(s) + R(g)(SO_{2} \text{ or } CO) \\ Hg^{0}(s) \\ Hg^{+2}X(g) + R(g)(SO_{2} \text{ or } CO) \\ Hg^{-2}X(g) + R(g)(SO_{2} \text{ or } CO) \\ \end{array}$

Background

- Gas-phase equilibrium assumption is not valid for mercury containing species at Temp < 500°C.</p>
- Post combustion zone temperatures range from 700°C to ambient and the gas residence times are in the range of 2 to 10 seconds.
- Gas quench and surface catalyzed reactions (cool zone reactions) should be important.
- The results of recent studies have clearly shown that presence of fly ash enhances mercury oxidation under post-combustion zone conditions.