VALUE-ADDED PRODUCTS FROM FGD SULFITE-RICH SCRUBBER MATERIALS

Vivak Malhotra Gediminas Markevicius (Ph.D. Studem) Sean Jones (Undergraduate) Scott Myers (Undergraduate) Project Manager (NETL): Chuck Miller

Project funded by DOE (NETL) (DE-FG26-06NT42689)

Cash cost share provided by Illinois Clean Coal Institute (ICCI-DEV05-4) In-kind cost share provided by two power plants burning high sulfur Midwestern bituminous coal

WET FGD SCRUBBER MATERIALS

(data from ACAA CCP 2005 survey)

FGD Wet Scrubber Materials

Sulfate-Rich (CaSO₄.2H₂O)

11.975 million tons per year

Sulfite-rich (CaSO₃.nH₂O)

17.700 million tons per year

Currently 9.268 million tons utilized (mostly in wallboard production, ~ 8.178 million tons)

2.707 million tons must landfilled

Currently 0.700 million tons utilized (mostly in mining, agriculture, roads etc.)

17.00 million tons must landfilled

OVERALL GOALS

- Thoroughly characterize, both physically and chemically, the sulfite-rich scrubber materials
- Establish the chemical and physical stability of our raw materials under product manufacturing conditions
- Optimize the fabrication conditions for the development of wood substitute composites
- Generate manufacturing parameters needed for upscaling to a pilot-scale product manufacturing
- Subject the products developed to rigorous performance evaluations

Scanning Electron Microscopy (Physical Structure)

Power Plant A

Power Plant B

Differential Thermal Analysis (DTA)

Some Odd Observations: Hg in scrubber materials

Preprints **51(1)**, 347-348 (2006).

How height from where the samples were extracted controlled the mercury concentration

Markevicius, West, Malhotra, Botha, Miller, ACS Fuel Div. Preprints **52(1)**, 170-172 (2007).

How the location of the samples affected the mercury concentration

ACS Fuel Div. Preprints **52(1)**, 170-172 (2007).

How temperature affected the Hg concentration at 5.6 MPa

Markevicius, West, Malhotra, Botha, Miller, ACS Fuel Div. Preprints **52(1)**, 170-172 (2007)

How pressure affected the Hg concentration at 210°C

ACS Fuel Div. Preprints **52(1)**, 170-172 (2007 Markevicius, West, Malhotra, Botha, Miller

Pressure (Scrubber Material: Power Plant A)

FTIR Spectra of processed scrubber material

Variable: Pressure

Temperature (Scrubber Material: Power Plant A)

T = 150°C P = 1115 psi T = 210°C P = 1115 psi

In-situ diffuse reflectance-High Temperature- FTIR (ISDR-HT-FTIR) Measurements: Natural Byproducts

In-situ diffuse reflectance-High Temperature- FTIR (ISDR-HT-FTIR) Measurements: Natural Byproducts Difference Spectra

(A) 175°C − 200°C, (B) 200°C − 225°C, (C) 225°C − 250°C,
(D) 250°C − 275°C, and (E) 275°C − 300°C

Development of Products to Replace Natural Wood-Derived Materials: Particleboards, Sawdust Boards, Plywood, & OSB Two Types of Materials Being Developed from Sulfite-rich Scrubber Material

Development of Products to Replace Natural Wood-Derived Materials: Particleboards, Sawdust Boards, Plywood, & OSB Two Types of Materials Being Developed from Sulfite-rich Scrubber Material

TYPE II: to replace plywood

Artificial Wood Products: FGD Sulfite-rich Scrubber Material NO COMMERCIAL POLYMERS USED for our products

Sample

Flexural Strength Properties of Wood Substitute Lumber and Wood Siding: Sulfite-Rich Scrubber

Lumber Type Products: FGD Sulfite-rich Scrubber Material US against THEM

SUMMARY & CONCLUSIONS

- The mercury associated with scrubber material from one of the power plants showed considerable variation -> raising the potential of heterogeneous mercury distribution in the scrubber material
- Fabrication of our products at high pressure dramatically retards the mercury emission from scrubber material even at temperatures as high as 235°C.
- Decomposition of crystalline water at 390°C < T < 440°C is expected to inhabit fire in our sulfite-rich scrubber material derived products
- The wood substitute composite fabrication steps do not alter the scrubber material's structural properties
- Our initial wood substitute composites developed from sulfite-rich scrubber material show great promise -> further nurturing is required and is on going