

Mechanisms of impurity effect and ductility enhancement of Mo and Cr alloys

N. Ma, and B.R. Cooper Physics Department

C. Feng and B.S.-J. Kang Mechanical and Aerospace Engineering Department West Virginia University

UCR/HBCU Conference, Pittsburgh, June 5, 2007

DOE/NETL UCR Program, Contract No. DE-FG26-05NT42526

Background

Ductility improvement of Mo phase by inclusion of metal oxide dispersion (Schnibel 2003)

Experimental difficulties:

- • Optimal dispersion **composition**
	- $-$ MgAl₂O₄, MgO, or other oxide candidates?
	- nano-size oxide? how to achieve uniform dispersion and prevent agglomeration?

Atomistic modeling can provide some answers to these questions to

Mo with spinel dispersions: different procedures
reduce experimental trial and error yield different results. (Schnibel, 2003)

Material Matrix

Alloys received from M.P. Brady and J. H. Schneibel, ORNL; HP: Hot Pressing; *: alloys tested

Influence of impurity elements

Insufficient ductility mostly due to impurities (such as N, O, etc.)

- •weaken the metal-metal bond
- \bullet precipitate or segregate as brittle oxides or nitrides

Ductility enhancement by MgO or $MgAl₂O₄$ spinel dispersions:

- \bullet Scruggs 1965: on Cr and Mo Alloys
	- –Mechanism assumed to be impurity gettering by spinel phase
- \bullet Brady 2003 (detailed microstructural analysis): on Cr Alloys
	- – No gettering effect found (impurities not detected in oxide phase)
		- $MgAl₂O₄$ is not as effective as MgO
		- Other metal oxides were tried with detrimental results
		- unclear whether MgO or $MgCr_2O_4$ is more effective
	- **Fundamental mechanism remains unknown**
		- Difficult to optimize the composition and size of dispersion material

The overall research objective is to understand and minimize the impurity effect for room-temperature ductility improvement of Mo- and Cr-based alloys by the inclusion of suitable nano-size metal oxide dispersions.

Task 1: Atomistic Modeling

To study mechanisms of impurity embrittlement of Crand Mo-based alloys and their room-temperature ductility enhancement by suitable metal oxides.

Task 2: In-situ Mechanical Property Measurement To develop a micro-indentation measurement technique for quick assessment of material mechanical properties.

Task I: Atomistic Modeling

Mechanisms of impurity embrittlement of Cr- and Mobased alloys and their room-temperature ductility enhancement by (nano-sized) metal oxides.

Objectives

- \bullet Probe *microscopic* mechanisms
	- Impurity embrittling due to N or O
	- Ductility enhancement effects of MgO or $MgAl₂O₄$
- Optimize performance
	- Optimal dispersion composition
	- Optimal size
	- Optimal processing condition, etc.

Outline

- **Theory:** Rice's criterion on ductility
- \bullet Results: Properties of electrons
- \bullet Results: Molecular dynamic simulations

Rice's criterion

What matters are:

the characteristics of the Chemical bonds **Chemical bonds in the valence electrons**

How **properties of electrons affect ductility**

Localized around ions

Immobile (cannot fill the voids easily)

 Delocalized, mobile electrons make flexible bonds \rightarrow **ductile**

Theory: summary

Rice's criterion

Outline

- •Theory: Rice's criterion on ductility
- \bullet **Results:** Properties of electrons
- \bullet Results: Molecular dynamic simulations

FP-LMTO*Ab-initio full-electron package*

Price, Wills, and Cooper, Phys. Rev. B 46 (1992) 11368

B. ductility enhanced system

Properties of electrons

•**Space distribution**

How localized/delocalized electrons are

• **Energy distribution**

How easy electrons can be excited to mobile states

• **Angular momentum distribution**

How rigid/flexible chemical bonds are

Charge density distribution

Results: Interstitial charge (Cr alloys)

more interstitial charge → better ductility

Results: Interstitial charge (Mo alloys)

more interstitial charge → better ductility

Results: Muffin-tin charge distribution

uniformly shared MT charge (less variance) \rightarrow better ductility

Properties of electrons

•**Space distribution**

How localized/delocalized electrons are

• **Energy distribution**

How easy electrons can be excited to mobile states

• **Angular momentum distribution**

How rigid/flexible chemical bonds are

Density of states (DOS)

How easy electrons can cross the Fermi level to assume mobile states?

Results: DOS (Cr alloys)

Results: DOS (Mo alloys)

Properties of electrons

•**Space distribution**

How localized/delocalized electrons are

• **Energy distribution**

How easy electrons can be excited to mobile states

• **Angular momentum distribution**

How rigid/flexible chemical bonds are

L-projection: s *(l=0)* **vs. d** *(l=2)*

d electron

s electron

Results: L-projected population

Results: L-projected energy

Results: Band structure

s band is pushed up by N's 2s band (not shown) from below, therefore becomes less populated \rightarrow reduced s-partition and brittle system

Summary: Properties of electrons

Impurities (N or O) in Cr/Mo *What has been achieved?*

Identified *microscopic* criteria to predict **brittle/ductile** properties

These criteria can

Æ**Alter the characteristics of chemical bonds***Explain the mechanism Be used in larger scale simulations to optimize performance*

Outline

- \bullet . Theory: Rice's criterion on ductility
- •Results: Properties of electrons
- \bullet **Results:** Molecular dynamic simulations

FIREBALL*Ab-initio tight-binding package*

Lewis, Glaesemann, Voth, Fritsch, Demkov, Ortega, Sankey, Phys. Rev. B 64 (2001) 195103

Result: Molecular dynamics (Cr/MgO with N)

163 atoms

Constant Temperature (600 K)

Diffusion time \sim 1ps (10⁻¹²s) Diffusion length ~ 2A

Result consistent with Brady's experiment

West Virginia University

Analysis: Charge density distribution and DOS (Cr/MgO with N, initial and final configurations)

Result: Molecular dynamics (Cr/MgAl2O4 with N)

111 atoms

Constant Temperature (600 K)

Diffusion time \sim 1ps (10⁻¹²s) Diffusion length ~ 2A

Result: Molecular dynamics (Mo/MgAl2O4 with O)

Mo Mg Al O

105 atoms

Constant Temperature (600 K)

Simulation time ~1.6ps

No significant oxygen diffusion is observed. Results support Schneibel's conclusion.

Summary: Molecular dynamics simulation

Cr-based systems: *Observed possible impurity gettering*

- N diffused from inside the matrix to the interfacial boundary
- Charge distribution and DOS properties indicate improved ductility
- Results in consistency with Brady's experimental work:

"impurity management effects" Brady, et.al. Mat. Sci. & Eng. A, 358, 243 (2003)

Mo-based systems: *No impurity gettering observed*

- O impurity stable in matrix after 1.6 ps (1600 steps)
- Significant relaxation in the spinel phase due to lattice mismatch
- Results support Schneibel's conclusion

"grain size optimization effects" Schneibel, et.al. Metall. & Mater. Trans. 34A, 25 (2003)

Conclusions

Identified *microscopic* criteria to predict **brittle/ductile** properties *These criteria can Explain the mechanisms Be used in larger scale simulations to optimize performance*

Observed possible tendency for **impurity gettering** *This work demonstrates the capability of Studying the dynamic effects Carrying out large scale simulations*

Third-Year Research

Larger system size (nano scale simulation)

- •Dispersion particle size effects
- •Dynamic effects (quenching, diffusion, etc.)

Other metal oxide composition

• $MgAl₂O₄$ or other to achieve better ductility?

Same technique used here can be applied in **other areas**

•S/P/As effects on Ni annode material in SOFC **West Virginia University**

Outline Task 2: In-situ mechanical property measurement

- \bullet Micro-indentation Technique Development
	- Gen I: Transparent Indenter Measurement (TIM) Technique
	- Gen II: Simplified TIM Technique
	- **Gen III**: Multi-partial unloading indentation technique
	- **Capability:** Young's modulus, hardness, stress-strain curve ofalloys or thin-film coating, surface stiffness response measurement of multi- layers structures
- • Ductile/Brittle assessment using indentation technique
	- Indentation-induced surface cracking
	- Surface profile/slip lines/shear bands

Materials Matrix

(Alloys received from M.P. Brady and J. H. Schneibel, ORNL)

#678, Mo-3.4wt%MgAl₂O₄: 1800°C/4hr/3ksi/Vacuum, Mo powder 2-8μm, MgAl₂O₄, 1-5μm #696, Mo-3.0wt%MgAl₂O₄: 1800°C/1hr/3ksi/Vacuum, Mo powder 2-8μm, MgAl₂O₄, 1-5μm #695, Mo only : 1800°C/1hr/3ksi/Vacuum, Mo powder 2-8μ^m **#697, Mo-6.0wt%MgAl₂O₄ : 1800°C/1hr/3ksi/Vacuum, Mo powder 2-8μm, MgAl₂O₄, 1-5μm #698, Mo-3wt%MgO :** 1800°C/1hr/3ksi/Vacuum, Mo powder 2-8μm, MgO, 1-5μ^m **Cast Re-(26-30) Cr wt% nominal**

(Powder mix prepared at WVU and sent to J.H. Schneibel for vacuum hot-pressed)

- **Mo-5.0wt%MgAl₂O₄ : 1800°C/0.5hr/3ksi/Vacuum**
- **Mo-5wt%MgO :** 1800ºC/1.0hr/3ksi/Vacuum
- **Mo-5.0wt%TiO₂** : 1700°C/0.5hr/3ksi/Vacuum

(WVU $\,\mathsf{MgO}_{0.05}\mathsf{Mo}_{0.95}$, $\mathsf{TiO}_{2\,0.05}\,\mathsf{Mo}_{0.95}$, $\mathsf{MgAl}_2\mathsf{O}_{4\,0.05}\,\mathsf{Mo}_{0.95}$ Powder Mixes)

- (1) 95 g of Mo powder (65 nm nominal) was mixed in ethyl alcohol and sonicated for 10 minutes using a high intensity sonicator (VC 600) in the presence of Argon.
- (2) Then 5 g of MgO or TiO₂ or MgAl₂O₄ powder (20 nm nominal) was added slowly to the Mo solution with continuous sonication. The total mixture was sonicated for 1 hour in Argon atmosphere.
- (3) The solution was kept at room temperature in Argon-filled glove box to let the ethanol evaporate for 24 hours. The remaining alcohol was removed by drying the product in vacuum.
- (4) The dried powder was kept in Argon filled glove box and packed in a bottle in the presence of Argon.

Gen I: Transparent Indenter Measurement (TIM) Technique

Optical Principle \Box

–Transparent indenter design –Direct contact radius measurement–Direct out-of-plane deformation measurement –Integrated phase-shifting technique

Laboratory Setup

–**Prototype on optical table** –Perform preliminary indentation tests

1. HeNe laser, 2. Beam expander, 3. Ring light source, 4. Indenter head, 5. λ /4 waveplate and reference mirror, 6. Specimen holder, 7. Imaging lens, 8. LCVR, 9. Polarizer, 10. Loading system

Application of TIM Technique: E and stress-strain evaluation

Loading: Fringe pattern, wrapped phase and contact radius

Loading: Fringe pattern, wrapped phase and contact radius

Unloading: Fringe pattern, wrapped phase and contact radius Unloading: Fringe pattern, wrapped phase and contact radius

Al 6061-T0

Gen II: Simplified Transparent Indenter Measurement System

- •No laser interferometry, white light illumination only.
- •Young's modulus without dedicated displacement sensor
- •Laboratory table top setup and Portable setup

Instrumented Indentation Technique

•Young's modulus (E)

$$
\frac{dP}{dh} = \frac{2}{\sqrt{\pi}} E_r \sqrt{A}
$$
 (Spherical indentation)

Where *Er* is the reduced Young's modulus,

$$
\frac{1}{E_r} = \frac{1 - v^2}{E} + \frac{1 - v_0^2}{E_0}
$$
 (M.F. Doerner et al, 1986)
(Oliver and Pharr, 1992)

P-h curve from load-depth sensing indentation test

A: contact region (derived from dp/dh or direct measurement)

•Post-yielding stress-strain data

- – Tabor's empirical relation: *d :* contact diameter, D *:* indenter diameter, *Pm:* mean pressure *C:* constraint factor.
- Constraint factor C is strain hardening depended

$$
\varepsilon = 0.2 \frac{d}{D}
$$

$$
\sigma = \frac{P_m}{C} \qquad P_m = \frac{Load}{\pi a^2}
$$

Multi-partial Unloading Procedure for E

IN783

West Virginia University

(b) Visualization of indented surface, Field of view for each image: 395um x 377um

Indentation Method for Stress-Strain Evaluation

 \bullet Initial multiple-partial unloadings for Young's modulus determination and followed by discrete loadings for post-yielding stress/strain data based on Tabor's equations

ORNL Cast Re-(26-30) Cr wt% Alloy

Application: ORNL Cast Re-(26-30) Cr wt% Alloy

• Initial multiple-partial unloadings for Young's modulus determination and followed by discrete loadings for post-yielding stress/strain data based on Tabor's equations.

Gen III: Multi-Partial Unloading Indentation Technique

Specimen Load-depth sensing indentation system without imaging

Displacement

Multi-partial unloading indentation technique

Governing Equations

$$
\frac{dh}{dp} = C \times \frac{1}{p^{1/3}} + C_s
$$

$$
C=\left(6RE_r^2\right)^{-1/3}
$$

Applications:

- •Young's modulus evaluation
- •Stress-strain curve assessment
- •Indentation creep evaluation
- •Other application: TBC investigation

Application: IN783 (Using Gen III indentation technique)

Using only the load-displacement curve, Young's modulus was determined from five indentation tests (168.4GPa [±] 5.1GPa)

Application: Molybdenum Alloy

Typical load-displacement curve, ORNL #678, #696, #697, #698 alloys

Application: Molybdenum Alloy

Typical load-displacement curve, WVU Mo-MgO, Mo-MgAl₂O₄, Mo-TiO₂ alloys

Summary: Young's Modulus Measurement

(Averaged value from five indentation tests, typical)

- Ductile/Brittle assessment using indentation technique
	- –Indentation-induced surface cracking
	- –Surface profile/slip lines/shear bands

Material surface condition evaluation Mo alloys with spinel particles

#695, brittle, indentation load 1500N, cracks are observed

#697, brittle, indentation load 1000N, cracks are observed

#678, Ductile, indentation 2000N, no cracks were observed

After spherical indentation, surface was evaluated under Optical Microscope, 10x. Cracks are marked with arrows

Material surface condition evaluation Mo alloys with spinel particles

SEM observation at 2000x

#695, brittle, indentation load 1500N, cracks are observed

#697, brittle, indentation load 1000N, cracks are observed

#678, Ductile, indentation load 2000N, no cracks were observed

Note: Dashed lines are indent boundaries

#696, Mo-3.0wt%MgAl2O4

•400N indentation, cracking

•1000N indentation, cracking

1000N indentation with 1.6mm WC indenter

(Image size: 321μm[×]240μm)

#698, Mo-3wt%MgO

•400N indentation, cracking

•1000N indentation, cracking

1000N indentation with 1.6mm WC indenter

(Image size: 321μm×240μm)

Mo-TiO₂ (WVU)

•400N indentation, cracking

•Vickers hardness

223HV, 1kg, 30s 353HV, 1kg, 30s

Mo-MgO (WVU)

•400N indentation, cracking

 \bullet Vickers hardness, 249HV, 1kg, 30s

Mo-MgAl₂O₄ (WVU)

•400N indentation, no cracks in MgAl2O4 uniformly distributed region

•Vickers hardness (plastic flow observed)

276HV, 1kg, 30s 344HV, 1kg, 30s

Conclusion:

- -(contrary to Cr alloys) Mo with $MgAl₂O₄$ spinel has better room-temperature ductility improvement than Mo with MgO
- -Mo with nano-size $MgAl₂O₄$ spinel showed promising result, however, optimized processing condition needs to be developed for uniform oxide dispersion
- - Developed a micro-indentation technique for in-situ mechanical property measurement

Planned Research:

Indentation Test at Elevated Temperature

Goal:

- Stress-strain relation evaluation at elevated temperatures up to 1200 C
- – Indentation creep test at elevated temperatures

High Temperature Indentation Using Multi-Partial Unloading Technique (Less difficult to implement)

•Based on Gen III multi-partial unloading indentation technique •Compact design (size of the indenter: 2 in diameter 12 in long) •Data processing is less complicated

Thank You !

XRD pattern of as-prepared and hot-pressed MgO0.05Mo0.95 samples. Note the shift of the lines to higher angles in the hot-pressed sample.

Particle size and strain values of the samples calculated from the modified Scherrer equation

#695 Mo, Vickers hardness

•174HV, 1kg, 30s

crack

#697, Mo-6.0wt%MgAl₂O₄, Vickers Hardness

#678, Mo-3.4wt%MgAl₂O₄, Vickers Hardness

215HV, 1Kg, 30S

#696, Mo-3.0wt%MgAl₂O₄, Vickers Hardness

214HV, 1kg, 30s

#698, Mo-3wt%MgO, Vickers Hardness

Indentation Fatigue Mo alloy #697

Loading. **Example 20 Loading.** The state of the sta

- • $S_{nominal}/S_{yield} = 0.95$
- • $S_{yield} = 300MPa$, $S_{nominal} = 285MPa$, 10 Hz.
- \bullet Failure occurred after ~600,000 cycles.

after ~600,000 cycles.