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• Computation of gas and solid dispersion 

coefficients in turbulent risers and bubbling 
beds

• Computation of turbulence and dispersion of 
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the 2D IIT riser 
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INTRODUCTIONINTRODUCTION

Traditional design of gasifiers for the FutureGen
project requires the knowledge of dispersion coefficients. 
However they are known to vary by 5 orders of magnitudes.

From experimental investigations, the dispersion 
coefficients are known to be large for large diameter bubbling 
beds and small at low gas velocities. Surprisingly they differ 
by two to three orders of magnitudes at the same gas velocity.

This study presents a computational method of 
determining the gas and solid axial and radial dispersion 
coefficients.



INTRODUCTIONINTRODUCTION

The physical definition of dispersion coefficients is based on the kinetic theory of 
gases. For diffusion of gases or particles, the diffusivity is defined as the mean 
free path times the average velocity.

The mean free path is obtained from the average velocity and collision time.

Therefore, the dispersion matrix can be defined as the Reynolds stresses times 
the collision time.

D L C= ×

L C τ= ×

τ×= CCDP
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Turbulent dispersion coefficients can be obtained as a function of normal Reynolds stress 
and the Lagrangian integral time scale as described below. 
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Computation of gas and solid 
dispersion coefficients in 

turbulent risers and bubbling beds
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Typical time series of 
hydrodynamic velocities (v)

for particles in the center region at a bed height of 4 m at 25 atmospheres.
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Normal Reynolds stress per bulk density 
of gas and solid phases at 6 m.
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Effect of the bed diameter on experimental 
and computed solids dispersion coefficients

for bubbling and turbulent fluidized beds for Geldart A and B particles
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PART 3

Computation of turbulence 
and dispersion of cork in the 

NETL riser



DOE NETL CFB UNIT DOE NETL CFB UNIT 

Computational domain of riser section 
of a CFB NETL unit

0.49Packed bed voidage
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Cork characteristics

Cork is an excellent bed material when tested 
at ambient conditions in air yields a similar density 
to that of coal converted to 10-20 atm and 1000oC
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A comparison of computational solid volume fraction profiles of A comparison of computational solid volume fraction profiles of cork particles cork particles 
to the NETL Morgantown riser data for three solids fluxes.to the NETL Morgantown riser data for three solids fluxes.

• In the experiment, the solids volume fraction profiles were obtained from the differential pressure drop.

• There is a reasonable agreement between the experiment and the simulation results, especially at the low flux. 
• At higher solid fluxes the simulated solids volume fractions are close to the experimental measurements, but deviate significantly at the top of the riser.
• This disagreement may be due to use of simplified geometry in the simulation and over-prediction of the experimental volume fractions

g
dz

Pd
ssερ=

Δ



a) Ws 10.37 kg/m2.s & Ug 4.71               b) Ws 17.1 kg/m2.s & Ug 4.71 m/s

Instantaneous solid volume fraction flow structure for two solidInstantaneous solid volume fraction flow structure for two solids fluxes.s fluxes.

For high flux, cluster formation occurs, especially at the bottom of the riser.
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• The granular temperature is ranged form about 0.4 to 0.9 m2/s2. There is a reasonable agreement between the experiment of Breault et al. 
(2005) and the simulation results.

Axial profile of laminar granular temperatureAxial profile of laminar granular temperature

Ws = 10.37 kg/mWs = 10.37 kg/m22.s .s UgUg = 4.71 = 4.71 m/sm/s
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• The Reynolds stresses use to calculate the turbulent properties such as turbulent granular temperature, energy spectrum, etc.
• They  can be calculated as a function of hydrodynamic velocity and mean velocity.
• The computations show that the gas and the solids Reynolds stresses are close to each other. 
• The anisotropic characteristics of the particle and gas fluctuations are clearly shown. 
• The axial Reynolds stresses are larger than the radial ones due to their production by the large gradient of axial velocity.
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We can estimate the energy spectrum,          , from the Fourier transforms of          using the fast Fourier 
transform (FFT) technique. 
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• small eddy oscillations, 
• cluster and individual particle oscillations 

• gravity wave
• internal solids circulation 
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A theoretically based correlation of particulate viscosity A theoretically based correlation of particulate viscosity 
for cork particles using simulation datafor cork particles using simulation data

• One of the transport coefficients is the solid viscosity. In the kinetic theory model, the solids viscosity is a function of granular 
temperature. 
• Figure shows the computed solids viscosity as a function of solid concentration.
• The solid viscosity increases with increasing the solid concentration. 
• An empirical correlation was corrected for the lower particle density and higher particle diameter to give the correlation for 812 
micron cork particles,
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• Figures show the comparisons of computed axial and radial gas dispersion coefficients with the literature survey by 
Breault (2006). 
• The computed dispersion coefficients are in the range of the literature data. 

Breault R.W., A review of gas–solid dispersion and mass transfer coefficient correlations in circulating fluidized beds. Powder Technology 163(1-2), (2006) 9-17.



Comparisons between computed solid dispersion coefficients and the 
literature survey for both directions , axial and radial 

Cork ParticlesCork Particles
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• The computations show that the solids dispersion coefficients are in the range of the literature data. 
• The radial dispersion coefficients in the riser are two to three orders of magnitude lower that the axial dispersion 
coefficients.
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Experiment of dispersion of FCC 
particles in the 2D IIT riser 



IIT 2-dimensional circulating 
fluidized bed

Particle image velocity measurement system

Experimental Setup



2-Dimensional circulating 
fluidized bed showing clusters 

formed by 75 µm FCC particles
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6.73 x 10-31.27 x 10-2

Turbulent due to cluster oscillationsLaminar due to individual particle 
oscillations 

Granular Temperature, m2/s2

Measured laminar and turbulent granular temperatures 

(Ug = 46.67 cm/s, h = 69.85 cm)
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Measured axial and radial solids dispersion coefficients 

(Ug = 46.67 cm/s, h = 69.85 cm)

3.78 x 10-51.77 x 10-4Turbulent

7.66 x 10-53.21 x 10-4Laminar

RadialAxial

Solids Dispersion Coefficient, m2/s

Measured Dispersion Coefficients
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Gasifier fuel cell



Hybrid gasification fuel cell-gas turbine-steam CC

Ruth LA. US DOE Vision21 Workshop, FETC Pittsburgh,PA, Dec. 1998.

Department of Energy (DOE) vision 21 concept involves coal gasification with oxygen in 
an entrained flow gasifier and electricity production using solid oxide fuel cells and gas turbines. 
The use of oxygen to supply the heat necessary for the endothermic carbon – steam reaction 
requires an additional 34 % moles of carbon per mole of steam. 

To improve this concept we combine the gasifier and the fuel cell into one unit in order to 
transfer heat from the fuel cell to the gasifier.
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The overall reaction is as follows:
Gasification
Fuel Cell
Net
Hence, ideally the gasifier fuel cell is 100% efficient, since Electrical work 

2 2C H O CO H+ → +

2 2, 2 2cathodeCO H O CO H O+ + → +

2, 2cathodeC O CO+ →

H GΔ = Δ =
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Gasification reactions consist of 3 reactions as follows:
Reaction 1: 
Reaction 2:
Reaction 3:

In addition to the three heterogeneous reactions, the water 
gas shift reaction occurs in the gas phase 
Water shift reaction

COCOC 22 →+

Kinetic ExpressionKinetic Expression

422 CHHC →+

22 HCOOHC +→+

222 HCOOHCO +⇔+

Carbon particles react with components of the gas phase
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The shrinking core model used to calculate the rate of the 
heterogeneous reactions is given by

Heterogeneous reaction model

Mass transfer Diffusion Reaction
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Rate consumption of hydrogen and carbon monoxide in a fuel cell is mol cm-3s-1

where  Ii - current density A cm-2

ni - 2, number of electron produced per H2 mole 
2, number of electron produced per CO mole

F - 96,500 C mol-1

- 2 mm, thickness of anode channel

αFn
I

i

i

α

Gasifier Fuel cell
The current density is given in Dharia (1977), in Gidaspow’s report 
(1980,1984) and his book (1994) as 

The reversible emf of fuel cell is obtained from the Nernst equation as a 
function of partial pressure.
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The entire system efficiency is estimated from the output of electric power and the 
consumption of carbon in the batch system (Cordiner et al 2007) 

where is the output electric power estimated by (Watt)

is the rate of carbon consumption (g/s)    

is the heat formation of carbon dioxide (-29677 J/g)

Entire System Efficiency

∫∫= IdxdyVPelelP

nconsumptioCarbonm&

22 COOCH →+Δ



Solid Volume Fraction         Weight Fraction of CO Weight Fraction of H2

Gas Temperature (K)         Current Density of CO     Current Density of H2 (A/cm2)

Instantaneous Profiles 
for the hydrogen-carbon monoxide gasifier fuel cell, 1073 K, 0.6 V.



Axial Mole Fraction Profiles 
in Isothermal Gasifier

Isothermal gasification at 1073 K with the water gas shift reaction (b=100 in water gas shift equation) 
with inlet steam at a velocity of 7.3 cm/s
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Axial mole fraction profiles 
in Gasifier Fuel Cell

The effect of the operating cell potential 
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Current Densities
of gasifier hydrogen and carbon monoxide fuel cells
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The total averaged current densities are 
0.41 and 0.30 A/cm2 based on operating 
cell potentials of 0.6 and 0.8 volts, 
respectively. 
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10739731073Inlet steam temperature (K)

432Case 

1073 K 0.6 V
Carbon consumption 0.0016 s-1

973 K 0.6 V
Carbon consumption 0.0019 s-1

1073 K 0.8 V
Carbon consumption 0.0012 s-1



68.1259.2552.5768.5646.11Total Efficiency %
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The effect of the water gas shift reaction (cases 1 & 2)
The effect of the inlet steam temperature (cases 2 & 3) 
The effect of the operating cell potential (cases 2 & 4) 
The effect of the initial concentration of H2O and CO2 (cases 2 & 5)

Gasifier Fuel Cell Efficiency



CONCLUSIONS
Gasifier fuel cell

The new concept of the bubbling gasifier – fuel cell 
ideally allows

• 100% of carbon enthalpy conversion to electrical 
energy

• Formation of CO2 as the only product ready for 
cleaning and sequestration

• High capacity storage of fuel: carbon, coal or 
biomass, not gases or liquid hydrogen

However, optimization is required to get closer to 
100% efficiency.  The present scheme gives an
efficiency of 68% and less.



SUMMARY

• We developed a new method for computing dispersion 
coefficients in risers and bubbling beds.
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• We developed a new PIV technique for measuring radial and 
axial dispersion coefficients in risers.

• We developed a more efficient coal gasifier system with CO2
sequestration than that proposed for FutureGen.
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