

An Evaluation of the Feasibility of Combining CO₂ Flooding Technology with MEOR Technologies in order to Sequester CO₂

Todd French, Rafael Hernandez, Lewis Brown, Magan Green, Gouchang Zhang, and Lynn Prewitt

Mississippi State University

 To revitalize archived microbial isolates from a previous DOE funded MEOR Project.

 Screen those cultures for the ability to produce methane, saponifiable membrane lipid types, and protein production

✓ Using radio-labeled CO₂ determine where it will go and to what extent.

CO2 Flooding

http://www.netl.doe.gov/technologies/oil-gas/EP_Technologies/Images/EP_Pages/EOR_CO2Flood.jpg

MEOR

(MSU Process)

Coupling CO₂ Flooding & MEOR

Products of CO₂ Metabolism

- CO₂ is combined with acetyl CoA to form Malonyl CoA
 - Fatty acid production
 - Reversed to produced Amino Acids
- CO₂ is combined H₂ to produce Methane
- H₂ is provided from the metabolism of hydrocarbons

- Microorganisms produce alcohols, aldehydes, acids thereby providing enough NADPH to reduce CO₂
- Some organisms produce H₂ as a means of regenerating NAD
- The reducing power for converting the CO₂ comes from the hydrocarbons or any reduced metals present in the reservoir.

- 1st Step in the project was to begin the revitalization of archived cultures.
 - Began reanimation of cultures by slowly increasing the temperature to 30°C

- Transfer the cultures to new medium
- Since these cultures were incubated anaerobically they were very slow growing.
- Successfully revitalized 20+ isolates

- 2nd Step in the project was to determine the potential chemicals that CO₂ could be converted into.
 - Methane
 - GC-TCD analysis of the headspace
 - Lipids (i.e. Fatty acids)
 - Bligh-Dyer Extraction
 - Transesterification RXN to produce FAME
 - GC FID analysis
 - Protein
 - Lowry Method
- All conducted using non-labeled CO₂

• Methane Production

Culture #	Medium + Carbon Source	% Produced	
		CO ₂ %	CH ₄ %
2	Tryptic Soy Agar	6.54	0.00
29	Tryptic Soy Agar	11.21	0.00
43	Tryptic Soy Agar	12.97	0.00
75	Tryptic Soy Agar	8.53	0.00
1	Tryptic Soy Agar	10.28	0.00
5	Tryptic Soy Agar	9.23	0.00
26	Tryptic Soy Agar	8.53	0.00
52	Tryptic Soy Agar	12.45	0.00
56	Tryptic Soy Agar	13.78	0.00
70	Tryptic Soy Agar	6.03	0.00
43	MSM + Hexadecane	1.35	1.61
53	MSM + Hexadecane	1.35	0.81
82	MSM + Hexadecane	1.36	0.81
88	MSM + Hexadecane	1.34	1.62
29	MSM + Hexadecane	1.35	1.62
78	MSM + Hexadecane	1.41	1.61
64	MSM + Hexadecane	1.38	1.62
85	MSM + Hexadecane	1.37	0.81
14	MSM + Crude Oil	1.35	0.81
64	MSM + Crude Oil	1.32	1.61
2	MSM + Molasses	9.26	0.00
88	MSM + Molasses	5.08	0.00

- Lipid Analysis
- Type of lipids present -Ether
 - Archae
 - -Ester
 - Phospholipids
 - Bacteria

http://www.bact.wisc.edu/Microtextbook/images/book_4/chapter_2/2-69.gif

http://www.langara.bc.ca/biology/mario/Assets/phospholipids.jpg

- 5 cultures (9, 17, 26, 65, and 77)
 - Had no unsaturated fatty acids.
 - Not Common in Nature
- Most all cultures had greater than 60% saturated fatty acids
- Culture 53 had greater than 60% unsaturated fatty acids.

- Protein was below detectable limits
- Decision made to wait until radioisotope studies

- 3rd Step in the project was to determine fate of CO₂ in biological systems using radio-labeled CO₂
 - Methane
 - N-hexadecane trap
 - Unused CO₂
 - KOH Trap
 - Lipids & Protein
 - Separated using Bligh-Dyer Extraction method
- All conducted using C¹⁴-labeled sodium bicarbonate

Culture #

Summary

- Cultures isolated responded positively to revitalization efforts.
- These cultures were capable of producing saponifiable lipids and proteins.
- Some of the cultures were capable of producing methane.
- Preliminary results using ¹⁴C indicate these cultures are capable of biologically converting CO₂ into cellular material

Future Efforts

- Continue to identify where the CO₂ is being incorporated using ¹⁴C sodium bicarbonate.
 - Since these were only initial experiments, they are currently being repeated.
 - Use this information to determine if there is any appreciable amount of CO_2 converted to cellular material

Acknowledgements

- Jack Carmicheal
- Britney Byrnes

Thank You!