NOVEL NANOCRYSTALLINE INTERMETALLIC COATINGS FOR METAL ALLOYS IN COAL-FIRED ENVIRONMENTS

<u>PI and co-PI</u>: Profs. Z.Zak Fang & H.Y. Sohn <u>Research Associate</u>: Dr. Peng Fan <u>Undergraduate Research Assistant</u>: Eric Riddle

<u>Outline</u>

- Background
- Selected materials
- New coating process concept
- Results to date
- Summary & future work

Background

• Challenges for achieving higher plant efficiency:

Increasing steam temperature and pressure requires combined resistances to creep, thermal fatigue, and corrosion at > 800°C

Current materials for steam pipes:

Ferritic steels: (used at < 620°C)

Austenitic steels: (used at < 675°C) low thermal expansion, high thermal conductivity; low corrosion resistance; good corrosion resistance; low thermal fatigue resistance; low thermal conductivity;

Two Pathways of Solutions to the Challenge

Develop new super steels or alloys having superior high temperature performance

Use a high-temperature corrosion-resistant coating on a base alloy with excellent mechanical properties

Selected Material for Coatings

Iron Aluminide: Fe₃Al

- Much higher oxidation & sulfidation resistance than ferritic & austenitic steels;
- Mechanism of its high corrosion resistance: Forming a dense and protective Al₂O₃ scale even at very low oxygen potential
- High temperature strength;
- Low density;
- Good wear resistance;
- Low cost.

Selected Material for Coatings

Iron Aluminide: Fe₃Al

- Very attractive, but not suitable for fabrication as large components due to its low ductility at ambient temperatures
- Great candidate as a coating material to provide high-temperature corrosion resistance to substrate alloys

Coating Processes

Thermal spray (e.g. HVOF, APS, etc):

- Low cost,
- Porosity,
- Thickness limited,
- Problematic adhesion due to mechanical rather than metallurgical bonding to the substrate

CVD or PVD coatings:

- Thickness < 50 microns</p>
- Cost usually high
- Substrate T>800°C

Coating Processes

Conventional weld-on overlay:

- Metallurgical bonding
- Thickness >1 mm,
- Welding defects
- Weld-able material selection versus the properties of these materials

Scope and Objective of this project:

Develop a new reaction coating process that:

- Coating to be formed via in-situ chemical reactions, similar to CVD
- Metallurgical bonding similar to weld-on
- No/minimum porosity overcome the shortcomings of thermal spray
- Sufficient and controllable thickness
- Corrosion resistance with controlled composition and grain microstructure

A New Reaction Coating Process

Based on PTA (plasma transferred arc)

A New Reaction Coating Process

Based on PTA (plasma transferred arc)

Fe₃Al coating are formed by either

- o Element Fe and AI in the powder mixture react while forming coating on the substrate during the PTA process
- o Elemental AI fed through the plasma react with substrate Fe and form a continuous coating
- o Vapor phase reaction of Fe and AI in-flight or while depositing as coating
- o In all scenarios, reaction w/ substrate plays a role that assures good bonding

Advantages of this process:

- o Reaction bond coating,
- o Thicker coating than TS, CVD,
- No or very low porosity
- o **Composition and grain size control**

Coating Equipment

<u>Outline</u>

- Background
- Selected materials
- New coating process concept
- Results to date
- Summary & future work

Coating with Elemental Fe/Al Mixed Powder

Microscopic view

Coating with Elemental Fe/Al Mixed Powder

Composition across Coating-Substrate Interface

Fe-Al Phase Diagram

Coating with AI Powder

Microscopic view

Coating with AI Powder

Composition across Coating-Substrate Interface

Coating with Fe₃Al Alloy Powder

Microscopic view

Coating with Fe₃Al Alloy Powder

Composition across Coating-Substrate Interface

Coating with Fe₃Al Alloy Powder

XRD analysis of coating layer

Evaluation of Coating-Substrate Bonding Strength

3-point bending test

Good bonding

Poor bonding

Good Coating-Substrate Bonding

Metallurgical Bonding at Interface

Steam-side Corrosion Test

Heating cycle: 20°C/min to 800°C; 20h at 800°C; 10°C/min to 300°C Atmosphere: air - 10 vol% H₂O

Tested materials: Fe_3AI coating vs Stainless steel (304)

Coating Surface after Steam-side Corrosion

4 cycles of 20°C/min to 800°C; 20h at 800°C; 10°C/min to 300°C

Atmosphere: air - 10 vol% H₂O

Stainless Steel Surface after Steam-side Corrosion

4 cycles of 20°C/min to 800°C; 20h at 800°C; 10°C/min to 300°C Atmosphere: air - 10 vol% H₂O

Fire-side Corrosion Test

Conditions: 800°C; air - 5 vol% SO_2 Coal ash (wt%): $5Na_2SO_4 - 5K_2SO_4 - 30AI_2O_3 - 30SiO_2 - 30Fe_2O_3$

Coating Surface after Fire-side Corrosion

Conditions: 200h at 800°C; air - 5 vol% SO_2 Coal ash (wt%): $5Na_2SO_4 - 5K_2SO_4 - 30Al_2O_3 - 30SiO_2 - 30Fe_2O_3$

Stainless Steel Surface after Fire-side Corrosion

Conditions: 200h at 800°C; air - 5 vol% SO_2 Coal ash (wt%): $5Na_2SO_4 - 5K_2SO_4 - 30Al_2O_3 - 30SiO_2 - 30Fe_2O_3$

Industrial Use Field Test

Fe₃Al coated on half-circle-shaped stainless steel

Industrial Use Field Test

Cross-section of Fe₃Al coated on half-circle-shaped stainless steel

Industrial Use Field Test

Summary and Future Work

- Fe₃Al coating can be formed by using Fe₃Al alloy powder, Fe/Al mixed powder as well as Al powder.
- Excellent metallurgical bonding forms between Fe₃Al coating and steel substrate.
- The superior corrosion resistance of Fe₃Al coating formed using the PTA process has been confirmed. For both steam-side and fire-side environments.
- Fe₃Al coated stainless steel pipes will be field-tested in power plant.
- Fe₃Al coating by the PTA reaction coating process using either elemental powders or vapor phase reaction of FeCl₃ & AlCl₃ with H₂ will be investigated
- The dependence of grain size on processing techniques and the effect of grain size on corrosion resistance will also be studied.

Acknowledgement

DOE/NETL/Coal Research Program

Thank you

Questions?