

Combined Theoretical and Experimental Investigation and Design of H ²S Tolerant Anode for Solid Oxide Fuel Cells

PI: Gerardine G. Botte

Associate Professor, ChE-BME

Director Electrochemical Engineering Research Laboratory

DOE Program Manager: L. Wilson

UCR Contractors Review ConferencePittsburgh, PA June 5-6, 2007

Collaborators Collaborators

•Damilola Daramola. MS student. Effort in the experimental scope of the project. Designed, constructed experimental set up. Builds SOFCs and tests them.

•Madhivanan Muthuvel. Post-doctoral research associate. Performs molecular modeling.

Introduction Introduction

Introduction

Background Objectives Molecular Modeling Quantum Chemistry Molecular Dynamics **Experimental Summary** Future Work

Acknowledgements

Solid Oxide Fuel Cells (SOFCs) are the most viable fuel cell technology to handle coal syngas

- • Functions at high temperatures $(600^{\circ}C - 1000^{\circ}C)$
- • Tolerable to contaminants like Carbon monoxide (CO) and Carbon dioxide (CO $_{\rm 2}$)
- \bullet Presence of Hydrogen sulfide $(H₂S)$ is harmful to SOFC anode

Therefore, it is imperative that a sulfur-tolerant <u>anode</u> be developed

Introduction Introduction

Introduction

Background Objectives Molecular Modeling Quantum Chemistry Molecular Dynamics **Experimental Summary** Future WorkAcknowledgements

Typical SOFCs are made up of

- • Electrolyte – Yttria-Stabilized Zirconia (YSZ)
- \bullet Anode – Nickel Oxide + Yttria-Stabilized Zirconia (Ni-YSZ)

Background Background

Introduction

Background

- **Objectives** Molecular Modeling Quantum Chemistry
- Molecular Dynamics
- **Experimental**
- **Summary**
- Future Work

Acknowledgements

Experimental research for the design of SOFC anodes -

- \bullet Mainly, trial and error methods
- \bullet Anode degradation mechanism is unclear
- \bullet Molecular modeling has not been utilized

RUSS COLLEGE ofEngineering

Introduction

Background

Objectives

Molecular Modeling

Quantum Chemistry

Molecular Dynamics

Acknowledgements

Experimental

Future Work

Summary

Overall Objectives Overall Objectives

- Our overall objective is to use a systematic approach that combines molecular modeling of the materials with experimentation to design a sulfur tolerant anode that is able to work with coal syngas
- • Molecular modeling can provide an understanding of the performance of the material and minimize the costs of experiments

RUSS COLLEGE of Engineering Technology

Specific Objectives Specific Objectives

Introduction Background

Objectives

Molecular Modeling Quantum Chemistry Molecular Dynamics **Experimental Summary** Future WorkAcknowledgements

- \bullet Obtain a better understanding of anode behavior in the presence of coal syngas
- \bullet Characterize and optimize the performance of the anode
- \bullet Determine the interactions between H_2 , H_2S and CO with Nickel Yttria Stabilized Zirconia (Ni-YSZ)
- \bullet Validate the theoretical models with experimental data

USS COLLEGE of Engineering and logy

Molecular Modeling Molecular Modeling

Introduction**Background Objectives Molecular Modeling**

Quantum Chemistry Molecular Dynamics **Experimental Summary** Future WorkAcknowledgements

This was carried out using two methods:

- 1. Quantum Chemistry
	- Structural Analysis
	- Software: Gaussian 03
- 2. Molecular Dynamics
	- Gas molecule and Anode surface interactions

– Software: Cerius 2 (Version 4.8)

RUSS COLLEGE of Engineering and
inology

Quantum Chemistry Quantum Chemistry

Introduction**Background Objectives**

Molecular Modeling

Quantum Chemistry Molecular Dynamics **Experimental Summary** Future WorkAcknowledgements

- Computes the energy of a particular molecular structure by using quantum laws
- •Performs geometry optimization
- •Computes vibration frequencies of molecules
- • Electronic structure methods solve Schrödinger Equation:

$$
H\psi = E\psi
$$

Molecular Dynamics Molecular Dynamics

Introduction**Background Objectives Molecular Modeling** Quantum Chemistry Molecular Dynamics **Experimental Summary** Future WorkAcknowledgements

•Simulates chemical structures numerically based on the fundamental laws of physics

•Computes the forces of interactions between different molecular structures

•Potential energy calculated by force field energy equations

•Kinetics energy calculated from Newton's second law

Results Quantum Chemistry

Quantum Chemistry Quantum Chemistry

Introduction**Background Objectives** Molecular Modeling **Quantum Chemistry** Molecular Dynamics Experimental Research

Summary

Future Work

Acknowledgements

Structures of the molecules were optimized by Density Functional Methods (DFT)

- •Method: B3PW91
- •Basis set: LANL2DZ
- •Phase: Gas phase

Optimization of Ni-YSZ Anode

- •YSZ structure was optimized
- •NiO was added to YSZ unit and then this new structure was optimized

Interactions with Gas Phase Interactions with Gas Phase Components Components

Background

Objectives

Summary

Future Work

Molecular Modeling

Quantum Chemistry

Molecular Dynamics

Acknowledgements

Experimental Research

Binding Energies with Gas Binding Energies with Gas Phase Components Phase Components Binding Energies (Kcal/mol)

- – Results suggest that anodic material reacts preferentially towards hydrogen
- Values of -24.2 and -26.9 kcal/mol also suggests that $\mathsf{H}_2\mathsf{S}$ and CO oxidation respectively are thermodynamically favored
- CO oxidation is more favorable than H_2S oxidation

Interactions with Gas Phase Interactions with Gas Phase Components: Combinations Components: Combinations

Background

Objectives

Summary

Future Work

Molecular Modeling

Quantum Chemistry

Molecular Dynamics

Acknowledgements

Experimental Research

Binding Energies with Gas Binding Energies with Gas Phase Components Phase Components

Combinations: Binding Energies (Kcal/mol)

 $-$ For the $\mathrm{H}_2/\mathrm{H}_2\mathrm{S}$ case, results suggest that $\mathrm{H}_2\mathrm{S}$ presence slows reaction of anodic material towards hydrogen

Background

Objectives

Summary

Future Work

Molecular Modeling

Quantum Chemistry

Molecular Dynamics

Acknowledgements

Experimental Research

Binding Energies with Gas Binding Energies with Gas Phase Components Phase Components

Combinations: Binding Energies (Kcal/mol)

- $-$ For the $\mathrm{H}_2/\mathrm{H}_2\mathrm{S}$ case, results suggest that $\mathrm{H}_2\mathrm{S}$ presence slows reaction of anodic material towards hydrogen
- Large values of -155.5 and -134.6 kcal/mol for the two CO cases also suggests that CO presence affects the oxidation of ${\sf H_2S}$ and ${\sf H_2}$
- $-$ As before, CO oxidation is more favorable than $\mathsf{H}_2\mathsf{S}$ oxidation

Background

Objectives

Summary

Future Work

Molecular Modeling

Quantum Chemistry

Molecular Dynamics

Acknowledgements

Experimental Research

Binding Energies with Gas Binding Energies with Gas Phase Components Phase Components

Combinations: Binding Energies (Kcal/mol)

CO affects the oxidation of both H_2 and H_2 S in ternary system

Results Molecular Dynamics

RUSS COLLEGE of Engineering rechnology

Introduction Background Objectives Molecular Modeling

Quantum Chemistry

Molecular Dynamics

Experimental

Summary

Future Work

Acknowledgements

Molecular Dynamics Calculations Molecular Dynamics Calculations

Simulations performed using Cerius2 (v. 4.8)

- • NVT ensemble (constant number of particles, volume and Temperature)
- • Each simulation began with 5000 fentoseconds of equilibration using a 0.5-fentoseconds/iteration time step and the velocity scaling temperature control method.
- • 200 ps simulation (production) time; 0.5 fs iteration time
- • Trajectory files were saved with a frequency of 5fs
- •Unit cells of 8,000 A³
- •Periodic 3D boundary conditions

RUSS COLLEGE of Engineering Technology

Introduction**Background Objectives** Molecular Modeling Quantum Chemistry

Molecular Dynamics

Experimental Summary Future WorkAcknowledgements

Molecular Dynamics Calculations Molecular Dynamics Calculations

Simulations performed using Cerius2 (v. 4.8)

- • Temperature: 850 ° $^{\circ}{\rm C}$
- • Concentrations:
	- $-$ 2% $\rm H_2 S$ balanced with $\rm H_2$
	- 2% CO balanced with ${\sf H}_2$
	- 2% CO, 2% $\rm H_2S$ balanced with $\rm H_2$
	- 1% CO, 1% H_2S balanced with H_2

Snapshot of the MD Simulation at 850° C: Interactions of $\rm H_2/H_2 S$ and $\rm H_2$ /CO with anode surface

H 2 molecules (gray) closer to Ni-YSZ than H ²S & CO

ISS COLLEGE ofEngineering **Interactions of the CO molecules (2%) with H 2Interactions of the CO molecules (2%) with H 2**Technology **and anode at 850° Cand anode at 850° C CO CO6.0 5.5 C-H2**surrounded by **Ni-C5.0** Introduction**H 2 gas phase gas phase 4.5Background 4.0**farther than H_2 **Objectives 3.5from anode surface from anode surfaceRDF** Molecular Modeling **3.02.5 Y-C**Quantum Chemistry **2.0Zr-C Molecular Dynamics 1.5 Experimental 1.0 Summary O-C0.5** Future Work**0.0**Acknowledgements **0 1 2 3 4 5 6 7 8 9 10r(Angstroms)**

Ni - H 2Interaction H_2/H_2 S stronger than H_2 /CO

Diffusion Coefficients of the Gas Phase Mixtures: 850 \degree \degree C

Diffusion Coefficients of the Gas Phase Mixtures

 \bullet Diffusion coefficient of H_2 in the presence of CO is smaller \blacksquare than in the presence of H_2 S.

- \bullet Repulsion of H_2 with the H atoms in the $\mathsf{H}_2\mathsf{S}$ molecule.
- \bullet Attraction of H_2 molecule to both atoms (C and O) in the CO molecule
- \bullet H₂ diffuses faster when H₂S and CO concentrations are lower; thus, CO and ${\sf H_2S}$ slows ${\sf H_2}$ oxidation
- \bullet Interaction $\mathsf{H}_2\!\!/\mathsf{H}_2\mathsf{S}$ stronger than $\mathsf{H}_2\!\!/\mathsf{CO}$
- \bullet H $_2$ S more surrounded by H $_2$ molecules at higher H $_2$ concentrations
- \bullet CO diffusion unchanged at higher H_2 concentrations

RUSS COLLEGE of Engineering Technology

Introduction**Background Objectives** Molecular Modeling Quantum Chemistry Molecular Dynamics **Experimental Summary**

Future WorkAcknowledgements • A planar cell will be used to investigate the effect of the gases on the anode

Experimental Setup Experimental Setup

- Quartz tubes to house the cell and withstand the high temperature
- Three furnaces will be used to maintain a uniform temperature of 850°C.

Cell Dimensions

Partial Setup Partial Setup

Summary Future WorkAcknowledgements

Control Panel Fume Hood

RUSS COLLEGE of Engineering Technology

Update on Experimental Tasks Update on Experimental Tasks

Introduction**Background Objectives** Molecular Modeling Quantum Chemistry Molecular Dynamics **Experimental Summary** Future Work

Acknowledgements

\checkmark Build setup

- \checkmark Make cells:
	- \checkmark Electrolyte is provided by Nextech.
	- \checkmark Anode and cathode electrodes are made in the lab using screen printing
- •Check sealing

Validation of the Models

Raman Spectra of YSZ Deposited on Ni-YSZ Raman Spectra of YSZ Deposited on Ni-YSZ at 400 oC by Atomic Layer Deposition at 400 oC by Atomic Layer Deposition

Source: C. Bernay, A. Ringuede, P. Colomban, D. Lincot, and M. Casi. Characteristic of the cubic and tetragonal crystalline phases of the **YSZ** The cubic phase is dominant

Journal of Physics and Chemistry of Solids, 64 (2003), 1761-1770

Raman Spectra of YSZ Predicted from DFT Raman Spectra of YSZ Predicted from DFT Calculations Calculations

Raman Spectra of Ni-YSZ Predicted from Raman Spectra of Ni-YSZ Predicted from DFT Calculations DFT Calculations

Raman Spectra of YSZ Comparison with Raman Spectra of YSZ Comparison with Experimental Results Experimental Results

Raman Spectra of Ni-YSZ Comparison with Raman Spectra of Ni-YSZ Comparison with Experimental Results Experimental Results

Raman Spectra of Ni-YSZ in the Presence of H 2 and H ²S. Raman Spectra of Ni-YSZ in the Presence of H 2 and H ²S. Experimental 10 ppm of H ²S, theoretical 50% Experimental 10 ppm of H ²S, theoretical 50%

Summary Summary

Introduction**Background Objectives** Molecular Modeling Quantum Chemistry Molecular Dynamics **Experimental Summary**

Future WorkAcknowledgements

- • Quantum Chemistry (QC) and Molecular Dynamics (MD) techniques combined provide useful insights of the interactions & mechanisms of H_2 S/H₂/CO reactivity towards the surface of the anode materials
- \bullet DFT calculations have predicted experimental results
- • Basis for future anode & sulfur-tolerant materials development for SOFC

RUSS COLLEGE of Engineering Technology

Introduction**Background Objectives** Molecular Modeling Quantum Chemistry Molecular Dynamics **Experimental Summary Future Work**

Acknowledgements

Future Work Future Work

- • Validate the model with experimental data by
	- Comparison between theoretical and experimental Raman Spectra
	- Comparison between impedance spectroscopy and theoretical diffusion coefficients
- • Identify materials that will improve the performance of the anode on the presence of coal syngas
- \bullet Build continuous model to predict the performance of the cell.

RUSS COLLEGE of Engineering hnology

Acknowledgements Acknowledgements

Introduction**Background Objectives** Molecular Modeling Quantum Chemistry Molecular Dynamics **Experimental Summary**

Future Work

Acknowledgements

- This work is supported by Department of Energy (DOE) under the Award Number DE-FG26-05NT42527
- Dr. Mark Stoy, Department of Mechanical Engineering, Ohio University, Athens, OH
- Electrochemical Engineering Research Lab (EERL) group members

Contact: Gerri Botte botte@ohio.edu

http://webche.ent.ohiou.edu/eerl/

www.ohio.edu/engineering