RUSS COLLEGE of Engineering Technology

Combined Theoretical and Experimental Investigation and Design of H₂S Tolerant Anode for Solid Oxide Fuel Cells

PI: Gerardine G. Botte

Associate Professor, ChE-BME

Director Electrochemical Engineering Research Laboratory

DOE Program Manager: L. Wilson

UCR Contractors Review Conference Pittsburgh, PA June 5-6, 2007

Collaborators

•Damilola Daramola. MS student. Effort in the experimental scope of the project. Designed, constructed experimental set up. Builds SOFCs and tests them.

•Madhivanan Muthuvel. Post-doctoral research associate. Performs molecular modeling.

Introduction

Introduction

Background Objectives Molecular Modeling Quantum Chemistry Molecular Dynamics Experimental Summary Future Work Solid Oxide Fuel Cells (SOFCs) are the most viable fuel cell technology to handle coal syngas

- Functions at high temperatures (600°C – 1000°C)
- Tolerable to contaminants like Carbon monoxide (CO) and Carbon dioxide (CO_2)
- Presence of Hydrogen sulfide (H₂S) is harmful to SOFC anode

Therefore, it is imperative that a <u>sulfur-tolerant</u> <u>anode</u> be developed

Introduction

Introduction

Background Objectives Molecular Modeling Quantum Chemistry Molecular Dynamics Experimental Summary Future Work Typical SOFCs are made up of

- Electrolyte Yttria-Stabilized Zirconia (YSZ)
- Anode Nickel Oxide + Yttria-Stabilized Zirconia (Ni-YSZ)

Background

Introduction

Background

- Objectives Molecular Modeling
- Quantum Chemistr
- Molecular Dynamics
- Experimental
- Summary
- Future Work

Acknowledgements

Experimental research for the design of SOFC anodes -

- Mainly, trial and error methods
- Anode degradation mechanism is unclear
- Molecular modeling has not been utilized

RUSS COLLEGE ofEngineering Technology

Objectives

Molecular Modeling

Molecular Dynamics

Overall Objectives

- Our overall objective is to use a systematic approach that combines molecular modeling of the materials with experimentation to design a sulfur tolerant anode that is able to work with coal syngas
- Molecular modeling can provide an understanding of the performance of the material and minimize the costs of experiments

RUSS COLLEGE ofEngineering Technology

Specific Objectives

Introduction Background

Objectives

Molecular Modeling Quantum Chemistry Molecular Dynamics Experimental Summary Future Work Acknowledgements

- Obtain a better understanding of anode behavior in the presence of coal syngas
- Characterize and optimize the performance of the anode
- Determine the interactions between H₂, H₂S and CO with Nickel Yttria Stabilized Zirconia (Ni-YSZ)
- Validate the theoretical models with experimental data

RUSS COLLEGE of Engineering Technology

Molecular Modeling

Introduction Background Objectives

Molecular Modeling Quantum Chemistry Molecular Dynamics Experimental Summary Future Work Acknowledgements

This was carried out using two methods:

- 1. Quantum Chemistry
 - Structural Analysis
 - Software: Gaussian 03
- 2. Molecular Dynamics
 - Gas molecule and Anode surface interactions
 - Software: Cerius² (Version 4.8)

RUSS COLLEGE ofEngineering Technology

Quantum Chemistry

Introduction Background Objectives

Molecular Modeling

Quantum ChemistryMolecular DynamicsExperimentalSummaryFuture WorkAcknowledgements

- Computes the energy of a particular molecular structure by using quantum laws
- Performs geometry optimization
- Computes vibration frequencies of molecules
- Electronic structure methods solve Schrödinger Equation:

$$H\psi = E\psi$$

Molecular Dynamics

Introduction Background Objectives **Molecular Modeling** Quantum Chemistry Molecular Dynamics

Summary

Future Work

Acknowledgements

•Simulates chemical structures numerically based on the fundamental laws of physics

•Computes the forces of interactions between different molecular structures

•Potential energy calculated by force field energy equations

•Kinetics energy calculated from Newton's second law

Results Quantum Chemistry

Quantum Chemistry

Introduction Background Objectives Molecular Modeling Quantum Chemistry

Molecular Dynamics Experimental Research Summary Future Work Acknowledgements Structures of the molecules were optimized by Density Functional Methods (DFT)

- Method: B3PW91
- Basis set: LANL2DZ
- Phase: Gas phase

Optimization of Ni-YSZ Anode

- •YSZ structure was optimized
- •NiO was added to YSZ unit and then this new structure was optimized

Interactions with Gas Phase Components

Quantum Chemistry

Molecular Dynamics

Binding Energies with Gas Phase Components Binding Energies (Kcal/mol)

Ni-YSZ + H ₂	-89.5
Ni-YSZ + H_2S	-24.2
Ni-YSZ + CO	-26.9

- Results suggest that anodic material reacts preferentially towards hydrogen
- Values of -24.2 and -26.9 kcal/mol also suggests that H₂S and CO oxidation respectively are thermodynamically favored
- CO oxidation is more favorable than H₂S oxidation

Interactions with Gas Phase Components: Combinations

Quantum Chemistry

Molecular Dynamics

Binding Energies with Gas Phase Components

Combinations: Binding Energies (Kcal/mol)

$Ni-YSZ + H_2 + H_2S$	-23.2	Ni-YSZ + H ₂	-89.5
Ni-YSZ + H_2 + CO	-155.5		
Ni-YSZ + H_2S + CO	-134.6		

 For the H₂/H₂S case, results suggest that H₂S presence slows reaction of anodic material towards hydrogen

Quantum Chemistry

Molecular Dynamics

Binding Energies with Gas Phase Components

Combinations: Binding Energies (Kcal/mol)

Ni-YSZ + H_2 + H_2 S	-23.2	Ni-YSZ + H ₂	-89.5
Ni-YSZ + H ₂ + CO	-155.5	Ni-YSZ + H ₂ S	-24.2
Ni-YSZ + H ₂ S+ CO	-134.6	Ni-YSZ + CO	-26.9

- For the H₂/H₂S case, results suggest that H₂S presence slows reaction of anodic material towards hydrogen
- Large values of -155.5 and -134.6 kcal/mol for the two CO cases also suggests that CO presence affects the oxidation of H₂S and H₂
- As before, CO oxidation is more favorable than H₂S oxidation

Quantum Chemistry

Molecular Dynamics

Binding Energies with Gas Phase Components

Combinations: Binding Energies (Kcal/mol)

Ni-YSZ + H ₂ + H ₂ S+ CO	-83.1	Reactivity of H H ₂ S towards a surface is slov	of H ₂ and ds anode slowed	
Ni-YSZ + H_2S + CO	-134.6	Ni-YSZ + CO	-26.9	
$Ni-YSZ + H_2 + CO$	-155.5	Ni-YSZ + H_2S	-24.2	
$Ni-YSZ + H_2 + H_2S$	-23.2	Ni-YSZ + H ₂	-89.5	

CO affects the oxidation of both H₂ and H₂S in ternary system

Results Molecular Dynamics

RUSS COLLEGE ofEngineering Technology

Introduction Background Objectives

Molecular Modeling

Quantum Chemistry

Molecular Dynamics

Experimental

Summary

Future Work

Acknowledgements

Molecular Dynamics Calculations

Simulations performed using Cerius2 (v. 4.8)

- NVT ensemble (constant number of particles, volume and Temperature)
- Each simulation began with 5000 fentoseconds of equilibration using a 0.5-fentoseconds/iteration time step and the velocity scaling temperature control method.
- 200 ps simulation (production) time; 0.5 fs iteration time
- Trajectory files were saved with a frequency of 5fs
- Unit cells of 8,000 A³
- Periodic 3D boundary conditions

RUSS COLLEGE ofEngineering Technology

Molecular Modeling

Molecular Dynamics

Molecular Dynamics Calculations

Simulations performed using Cerius2 (v. 4.8)

- Temperature: 850 °C
- Concentrations:
 - -2% H₂S balanced with H₂
 - -2% CO balanced with H₂
 - -2% CO, 2% H₂S balanced with H₂
 - 1% CO, 1% H_2S balanced with H_2

Snapshot of the MD Simulation at 850° C: Interactions of H_2/H_2S and H_2/CO with anode surface

H₂ molecules (gray) closer to Ni-YSZ than H₂S & CO

RUSS COLLEGE ofEngineering Interactions of the CO molecules (2%) with H_2 Technology and anode at 850° C CO **6.0** 5.5-C-F surrounded by 5.0 Ni-C H₂ gas phase 4.5 4.0 farther than H₂ 3.5 from anode surface 3.0 **Molecular Modeling** 2.5 **'-C** 2.0-Zr-Ç **Molecular Dynamics** 1.5 1.0-0-6 0.5-0.00 5 8 10 2 3 6 7 9 r(Angstroms)

Interaction H_2/H_2S stronger than H_2/CO

Electrochemical Engineering Research Lab, Ohio University

Ni-H₂

Diffusion Coefficients of the Gas Phase Mixtures: 850 °C

System	Diffusivity H ₂ (cm ² /s)	Diffusivity H ₂ S (cm ² /s)	Diffusivity CO (cm ² /s)
H ₂	1.5x10 ⁻⁴		
H ₂ /H ₂ S (2%)	1x10 ⁻⁴	1x10 ⁻⁵	
H ₂ /CO (2%)	5x10 ⁻⁶		3x10 ⁻⁷
H ₂ /H ₂ S/CO (2%)	9x10 ⁻⁶	2x10 ⁻⁶	6x10 ⁻⁹
H ₂ /H ₂ S/CO (1%)	2x10 ⁻⁵	8x10 ⁻⁹	6x10 ⁻⁹

Diffusion Coefficients of the Gas Phase Mixtures

•Diffusion coefficient of H_2 in the presence of CO is smaller than in the presence of H_2S .

- •Repulsion of H_2 with the H atoms in the H_2S molecule.
- •Attraction of H_2 molecule to both atoms (C and O) in the CO molecule
- H_2 diffuses faster when H_2S and CO concentrations are lower; thus, CO and H_2S slows H_2 oxidation
- •Interaction H_2/H_2S stronger than H_2/CO
- •H₂S more surrounded by H₂ molecules at higher H₂ concentrations
- •CO diffusion unchanged at higher H₂ concentrations

RUSS COLLEGE ofEngineering Technology

Introduction Background Objectives Molecular Modeling Quantum Chemistry Molecular Dynamics Experimental

Summary Future Work Acknowledgemen

Experimental Setup

- A planar cell will be used to investigate the effect of the gases on the anode
- Quartz tubes to house the cell and withstand the high temperature
- Three furnaces will be used to maintain a uniform temperature of 850°C.

Cell

Ni-YSZ (Anode)

Pt (Cathode)

Reference

2

50

Electrodes

10

50

Partial Setup

Summary Future Work Acknowledgements

Control Panel

Fume Hood

RUSS COLLEGE ofEngineering Technology

Update on Experimental Tasks

Introduction Background Objectives Molecular Modeling Quantum Chemistry Molecular Dynamics **Experimental** Summary

Acknowledgements

✓ Build setup

- ✓ Make cells:
 - ✓ Electrolyte is provided by Nextech.
 - Anode and cathode electrodes are made in the lab using screen printing
- Check sealing

Validation of the Models

Raman Spectra of YSZ Deposited on Ni-YSZ at 400 °C by Atomic Layer Deposition

Characteristic of the cubic and The tetragonal crystalline phases of the YSZ Source: C. Bernay, A. Ringuede, P. Colombar

The cubic phase is dominant

Source: C. Bernay, A. Ringuede, P. Colomban, D. Lincot, and M. Casi. Journal of Physics and Chemistry of Solids, 64 (2003), 1761-1770

Raman Spectra of YSZ Predicted from DFT Calculations

Raman Spectra of Ni-YSZ Predicted from DFT Calculations

Raman Spectra of YSZ Comparison with Experimental Results

Raman Spectra of Ni-YSZ Comparison with Experimental Results

Raman Spectra of Ni-YSZ in the Presence of H_2 and H_2S . Experimental 10 ppm of H_2S , theoretical 50%

Summary

Introduction Background Objectives Molecular Modeling Quantum Chemistry Molecular Dynamics Experimental Summary

Future Work Acknowledgements

- Quantum Chemistry (QC) and Molecular Dynamics (MD) techniques combined provide useful insights of the interactions & mechanisms of H₂S/ H₂/CO reactivity towards the surface of the anode materials
- DFT calculations have predicted experimental results
- Basis for future anode & sulfur-tolerant materials development for SOFC

RUSS COLLEGE ofEngineering Technology

Introduction Background Objectives Molecular Modeling Quantum Chemistry Molecular Dynamics Experimental Summary

Acknowledgements

Future Work

- Validate the model with experimental data by
 - Comparison between theoretical and experimental Raman Spectra
 - Comparison between impedance spectroscopy and theoretical diffusion coefficients
- Identify materials that will improve the performance of the anode on the presence of coal syngas
- Build continuous model to predict the performance of the cell.

RUSS COLLEGE of Engineering Technology

Acknowledgements

Introduction Background Objectives Molecular Modeling Quantum Chemistry Molecular Dynamics Experimental Summary

Future Work

Acknowledgements

- This work is supported by Department of Energy (DOE) under the Award Number DE-FG26-05NT42527
- Dr. Mark Stoy, Department of Mechanical Engineering, Ohio University, Athens, OH
- Electrochemical Engineering Research Lab (EERL) group members

Contact: Gerri Botte botte@ohio.edu

http://webche.ent.ohiou.edu/eerl/

www.ohio.edu/engineering 🗃