

NANOSCALE REINFORCED POLYMER DERIVED CERAMIC MATRIX COATINGS

Kaishi Wang and Rajendra K. Bordia

Department of Materials Science and Engineering University of Washington Seattle, WA, USA

University Coal Research Contractors Review Conference Pittsburgh, PA June 6, 2007

MOTIVATION

An illustration of coal fired power plant [www.tva.gov/power/coalart.htm]

Technology trends

• Ultrasupercritical coal fired power plant: higher temperatures and pressuresthe next generation

• Oxy-fuel combustion

• Advantages: increase in thermal efficiency of the plant; decrease the emission of SO_y, NO_y, etc., easier to sequester $CO₂$

• Disadvantages : increased corrosion rates of various alloys

• 3 types of corrosion for boiler parts are of concern: fireside corrosioncoal-ash corrosionsteamside oxidation

PROJECT STATUS

Project Origin

One possible solution: corrosion-, erosion-, oxidation-resistant coatings

Project Goal

Develop a new class of nanoscale reinforced ceramic coatings for high temperature (600-1000 °C) corrosion and oxidation protection of metallic components in a coal-fired environment.

Our Approach

- Nanostructured composite ceramic coatings
- Easy and inexpensive coating process
- Non-line of sight (for complex shapes)
- Using high yield pre-ceramic polymers

Other Approaches

- Pack cemetation
- Electrospark deposition
- Vapor phase (PVD, CVD, Ion implantation etc.)

Project funded by DoE Office of Fossil Energy, National Energy Technology Labs, August 2005 – August 2008

KEY ISSUES BEING ADDRESSED

Processing of Nanoscale Reinforced Polymer Derived Composite Ceramics

- **- Selection of polymer, fillers and particle size of fillers**
- **- Thermodynamics and kinetics of phase evolution and reactions**
- **- Control of shrinkage during poymer to ceramic conversion**
- **- Mechanistic understanding of the evolution of the phases and microstructure**

Understanding and Optimization of the Coating Process

- **- Dispersion of nanoscale fillers in the polymer**
- **- Control of slurry rheology and its effect on coatings**
- **- Mechanics of constrained pyrolysis of the coating**
- **- Optimized processing strategies for crack free coatings**

Performance of the Coatings

- **- Mechanical properties of the coating and the interface**
- **- Thermomechanical performance under therrmal cycling**
- **- Performance under selected corrosion conditions**

Key Accomplishment

WASHINGTON

Have produced high quality coatings with good understanding and control of the process

SPECIFIC OBJECTIVES AND THEIR STATUS

Selection of Material System

- **- Selection of polymer, fillers and particle size of fillers (completed)**
- **- Densification and microstructure development during polymer to ceramic conversion (completed)**
- **- Evaluation of thermal stability and corrosion response (ongoing)**

Processing of Coatings Including Optimization of Slurry Rheology

- **- Optimization of slurry viscosity for different systems (completed)**
- **- Development of the dip-coating process (completed)**
- **- Densification and microstructure development in the coatings (ongoing)**

Characterization of the Coatings

- **- Mechanical properties of the coating and the interface (year 3)**
- **- Thermomechanical performance under thermal cycling (year 3)**
- **- Performance under selected corrosion and oxidation conditions (year 3)**

OUTLINE

I. Background on polymer derived ceramics (processing, thermal conversion, role of fillers)

II. Results

- **material selection**
- **green state processing of coatings**
- **coating microstructure**
- **III. Conclusions and planned research**

Pioneering work by Prof. Yajima in the 70s which led to the development of Nicalon SiC fibers

SILICON BASED PRECURSORS FOR CERAMICS

UCR Contractors Review Conference (June 2007) Wang and Bordia

WASHINGTON

POLYMER DERIVED CERAMICS

\bullet Advantages over traditional methods:

- Liquid form with low crosslinking temperature
	- \triangleright use polymer processing techniques
		- Dip or spin coating, spraying, painting
		- Injection molding, pressure curing, etc.
- Relatively low pyrolysis temperatures
- High purity reactants
- Will combine with reactive atmospheres
- – Tailorable composition, microstructure and properties
- Unusual nanostructures: amorphous and nanodomains

•**Limitations**

- Shrinkage of polymer upon pyrolysis can be up to 50%
- –Pore formation on pyrolysis
- Defects and cracks in coatings

- 1. MEMS
- 2. Near net shape part
- 3. Porous ceramics (foams & filters)
- 4. Ceramic joint
- 5. PDC reinforced metals

PLASTIC SHAPING WITH PRECERAMIC POLYMERS

Impregnation

Rapid Prototyping

Coating

UNIQUE NANOSTRUCTURES

Structure between polymer and ceramic: Need different characterization techniques (IR spectroscopy, Raman spectroscopy, small angle X-ray scattering etc.)

ACTIVE FILLER CONTROLLED PYROLYSIS

(Griel, Erlangen)

CONVERSION OF EXPANSION AGENT

OUTLINE

I. Background on polymer derived ceramics (processing, thermal conversion, role of fillers)

II. Results

- **material selection**
- **green state processing of coatings**
- **coating microstructure**

III. Conclusions and planned research

Pioneering work by Prof. Yajima in the 70s which led to the development of Nicalon SiC fibers

SELECTION OF THE POLYMER

Criteria for selection of a pre-ceramic polymer:

- High ceramic yield on pyrolysis
- Relatively low pyrolysis temperature (limited by metallic substrates)
- Polymer must be soluble or liquid
- Phase formed upon pyrolysis- will depend on ability to react with atmosphere
- Pyrolysis byproducts (their composition and morphology)

POLYMERS INVESTIGATED (Oxycarbides)

Polymers Studied:

- •Methylsilsesquioxane (MSQ)
- •Phenylsilsesquioxane (PSQ)
- •Phenylpropylsilsesquioxane (PPSQ)
- •Oxycarbide A (OxyA) (Starfire Corp.)
- •Phenylmethylsilsesquioxane (PMSQ) •Oxycarbide C (OxyC) (Starfire Corp.)

•Poly(hydromethylsiloxane) (PHMS)

POLYMER TO CERAMIC CONVERSION (oxycarbides)

SELECTED POLYMER

Poly(hydromethylsiloxane) (PHMS)

- High ceramic yield: >85%
- –Complete conversion to ceramic at temperatures ≤ 800 °C
- Liquid form: viscosity \sim 1.0 cP, ideal for coating processing
- Stable under ambient conditions
- –Rapid crosslinking: @150 0C in humid air
- Inexpensive

Hydrolysis-Condensation-Pyrolysis

 $\pmb{\times}$

Hydrolysis:

• Hydrogen is replaced by -OH group in presence of water and Ru catalyst at 150ºC

Condensation:

• -OH groups combine to complete Si-O-Si bond giving off water

Pyrolysis:

• Carbon groups are removed as temperature increases to form a 3-D amorphous random network consisting of Si-O bonds and <5% of residual carbon bonded to Si. Reaction is completed by 650ºC.

SELECTION OF EXPANSION AGENT: DETERMINATION OF VOLUME CHANGE

The volume change of the expansion agent upon reaction is given by the equation: Δ*V*

$$
\frac{\Delta V}{V_o} = \alpha^{EA} \beta^{EA} - 1
$$

Where:

 $\alpha^{EA} = \frac{\text{mass of reaction product}}{}$

 $\beta^{EA} = \frac{\text{density of expansion agent}}{\text{density of reaction product}}$

 $\alpha^{EA} \beta^{EA} = 1 \rightarrow$ no reaction (inert agent) $\alpha^{EA} \beta^{EA} > 1 \rightarrow$ volume expansion due to reaction

SELECTED EXPANSION AGENTS

- \bullet Binary metal alloys and intermetallics
- \bullet Need $\alpha^{EA} \beta^{EA} > 1$ on oxidation
- •Selected expansion agents are:

*Average Particle Size in micrometer; **Weight Gain in percentage, "before/after" refers to as received and attrition milled powders

Additional Inert fillers:SiC, Al₂O₃, SiO₂, Cr₂O₃ nanoparticles (APS ~50 nm)

EXPANSION AGENTS: DISILICIDES

- \bullet Thermogravimetric analysis: study on the oxidation kinetics of fillers
- •Example: CrSi₂
- \bullet Conditions: 1C/min or 5C/min, 800~1000C, air/oxygen atmosphere

Attrition milling significantly enhances conversion kinetics due to reduction in particle size and removal of oxide surface layer

EXPANSION AGENTS: ALUMINIDES

- •Thermogravimetric analysis: study on the oxidation kinetics of fillers
- •Ti-Al alloy with atomic ratio: 1:1, 1:3, 3:1
- •Conditions: 1C/min or 5C/min, 900C, air atmosphere

Comparison of three aluminides @5C/min and in air

Ti-Al becomes more oxidation resistant when Al content increases $@$ ~70 at.%, continuous layer of passivating Al_2O_3 can form

SELECTED SUBSTRATES

Substrates (alloys):

- [Fe-based] Super 304 H: austenitic stainless steel
	- \bullet Superheater and reheater tubing
	- \bullet Fireside corrosion, oxidation resistance; creep strength
- [Ni-based] Inconel 617: advanced nickel alloy
	- \bullet Coal-fired boiler tubing
	- \bullet High Cr content enables to serve in highly corrosive environment over 650C

PROCESSING OF COATINGS

Flow chart of the processing procedure of ceramic matrix coatings

CRITICAL COATING THICKNESS

From analytical models, based on stresses generated due to constrained pyrolysis, we have determined a critical coating thickness, t_c , such that

if t $\lt t_c \rightarrow$ no cracking of film

 $\mathfrak{t}_{\rm c}$ depends on shrinkage rate

In these composite systems

- Shrinkage rate controlled by filler volume fraction (V_f)
- •Expect that as t \uparrow get cracking (at a specific V_f)
- Expect that $t_c \uparrow$ as filler $V_f \uparrow$ (because shrinkage rate \downarrow)

CRITICAL COATING THICKNESS

- as t \uparrow get cracking (at a specific V_f)

*A critical coating thickness exists below which defect free coatings are obtainable • Initial filler volume fraction controls critical coating thickness

UNIVERSITY O WASHINGTON

UCR Contractors Review Conference (June 2007) Wang and Bordia

 $15k$

88883

REQUIRED VOLUME FRACTION OF EXPANSION AGENT FOR ZERO SHRINKAGE

Knowing the shrinkage of the polymer and the volume expansion of the filler, the required volume fraction for zero shrinkage of the composite can be calculated

$$
V_T = V_T^* \left[\left\{ 1 - \frac{V_T^*}{\varepsilon^P} \left[1 - \left(\alpha^{\mathit{EA}} \beta^{\mathit{EA}} \right) \right] \right\}^{-1} \right] \begin{array}{c} V^*_{\mathit{T}} \text{ critical loading volume fraction} \\ \varepsilon^P \text{: linear shrinkage of the polymer} \end{array}
$$

In reality, more filler may be required than predicted, mainly due to incomplete oxidation

CONTROL OF COATING THICKNESS (h)

- •Dip-coating: Landau-Levich equation for Newtonian fluids
- •Nature of slurries: non-Newtonian fluid with shear-thinning behavior
- •Theoretical basis for controlling the green state coating thickness (h_0) which determines the fired coating thickness (h)
- •For our processing window:

$$
h_0 = 0.944 \left(\frac{\mu U}{\sigma}\right)^{\frac{1}{6}} \left(\frac{\mu U}{\rho g}\right)^{\frac{1}{2}}
$$

 h_0 : film thickness μ : apparent viscosity *U*: withdrawal speed σ: surface tension ρ : dip-coating slurry density *g*: gravity

- •Optimize viscosity, surface tension and withdrawal speed to get desired thickness
- •Optimized parameters for the processing of $TiSi₂-filled coatings$:

* Volume Ratio--(filler powder + PHMS) : n-octane

SHEAR THINNING: APPARENT VISCOSITY

• Withdrawal speed, *U*, range: 30-100 cm/min

$$
\left(\mu_{app}\right) \hspace{1cm} h_0 = 0.944 \left(\frac{\mu V}{\sigma}\right)^{\frac{1}{6}} \left(\frac{\mu U}{\rho g}\right)^{\frac{1}{2}}
$$

•Correlation between *U* and shear rate, γ:

$$
\dot{\gamma} = \frac{\partial v_x}{\partial y} = \frac{U - 0}{m \cdot h_0} = \frac{U}{m \cdot h_0}
$$

- •Assume *h0* = 20E-6 m; 1≤*m*≤3
- •When $m = 2$, $125 \le \gamma \le 417 \text{ s}^{-1}$, $25 \le \mu \le 35 \text{ cP}$
- •Near-Newtonian behavior
- \bullet Therefore, the average value of apparent viscosity, μ for any specific system can be calculated, and this value is valid throughout the withdrawal speed range investigated.

EFFECT OF WITHDRAWAL SPEED ON FINAL COATING THICKNESS

Example: 30 vol% CrSi2-filled PHMS coating on Inconel 617, pyrolyzed at 800C in air

Withdrawal speed: 30, 50, 75, 100 cm/min.

Thickness increases as withdrawal speed increases Results will be analyzed using the Landau-Levich model (on-going)

MICROSTRUCTURE EVOLUTION: TiSi₂-FILLED PHMS COATINGS ON STEEL

•Both coatings have little reaction of expansion agents •200ºC coating has very poor bonding to the steel •Coatings contain large percentage of porosity

MICROSTRUCTURE EVOLUTION: TiSi₂-FILLED PHMS COATINGS ON STEEL

•600ºC coating has partial conversion of filler •800ºC coating has good bonding and full conversion of filler •Both coatings exhibit reduced porosity

TiSi₂-FILLED PHMS COATINGS ON STEEL

Submicron Filler- 30 vol%

Approx. Composition by wt: 40% Si, 25% Ti, <5% C, balance O

Achieved a uniform thickness of 25-30 μ^m

Full conversion of nanoscale expansion agent

Coating still contains some porosity

Good bonding seen between coatings and substrate

INTERFACIAL CHEMISTRY: TiSi₂-FILLED PHMS COATINGS ON STEEL

- •Example: 30 vol% TiSi₂-filled PHMS coating on steel, pyrolyzed at 800C in air
- • Results show:
	- Uniform thickness, very limited porosity
	- Full conversion of the expansion agent
	- Good bonding between coating layer and the substrate

30 vol% TiSi $_2$ + PHMS, $\mathrel{@}$ 800C in air

EDS analysis at the pyrolyzed interface: abrupt interface (600C), diffusion layer with good bonding (800C)

INTERFACIAL CHEMISTRY: CrSi₂-FILLED PHMS COATINGS ON INCONEL 617

30 vol% CrSi₂-filled PHMS coating on Inconel 617, pyrolyzed at 800C in air

EDS: Oxygen higher in the interfacial region (~1.5μ*^m*)

In-situ formation of thermally grown bond coat

SUMMARY AND PLANNED RESEARCH

Processing of Nanoscale Reinforced Polymer Derived Composite Ceramics

- **- Polymer, six active fillers of appropriate particle size and two substrates have been selected**
- **- Thermodynamics and kinetics of phase evolution and reactions has been completed**
- **- Control of shrinkage during poymer to ceramic conversion by controlling the volume fraction and conversion of the fillers**
- **- Mechanistic understanding of the evolution of the phases and microstructure is being developed**

Understanding and Optimization of the Coating Process

- **- Dispersion of nanoscale fillers in the polymer has been accomplished**
- **- Control of slurry rheology and its effect on coatings has been investigated**
- **- Mechanics of constrained pyrolysis of the coating has been analyzed (critical coating thickness)**

- Optimized processing strategies for crack free coatings have been developed for the silicide filled systems

Ongoing and Planned Research

- **- Optimization of the processing for aluminide filled systems**
- **- Mechanical properties of the coating and the interface**
- **- Thermomechanical performance under therrmal cycling**
- **- Performance under selected corrosion conditions**

POLYMER DERIVED CERAMICS

Processing with polymer derived ceramics offers a great variety of:

- **Shaping possibilities**
- **Novel routes of ceramic processing**
- **Potential process improvements (e.g. temperature decrease!)**
- **Specific solutions to desired properties**
- **Unique nanostructures (between polymer and ceramic)**

Inexhaustible R&D playground specially for chemists and material scientists and engineers !!!

- \bullet Funding: DOE DE-FG26-05NT42528
- •• Dr. Jessica Torrey (worked on the TiSi₂ filled system and trained Kaishi)

Thank You

