Lab-Scale Studies of Oxy-fuel Combustion

Richard L. Axelbaum, Pratim Biswas, Achariya Suriyawong, Scott Skeen, Ari Roisman and Melissa Holtmeyer

Energy, Environmental and Chemical Engineering Washington University in St. Louis

Benefits of O₂-Enriched Combustion

- •Reduces NO_{x}
	- Reduces amount of nitrogen in flame
- • Recirculation of flue gas
	- reduces fuel-NOx
	- Improves sorbent capture of SO_2
- •Reduces flue gas volume
- •Facilitates $CO₂$ capture and sequestration
	- high concentration of CO₂ in exhaust stream ~ 95% (Kimura, et al, 1995)

Oxy vs. Air-Fired Coal Combustion

Motivation

- Oxy-fuel combustion opens up the potential for a wide range of novel mixing scenarios that are not available when air is the primary oxidizer.
- The method of mixing the reactant streams can dramatically affect the local composition and temperature and this, in turn, can affect the products of combustion.
- Oxy-fuel combustion can be optimized for multi-pollutant control

Inert Exchange to Vary Z_{st}

Stoichiometric Mixture Fraction, Z_{st}
Mixture fraction where fuel and
oxidizer are in stoichiometric proportions

$$
Z_{st} = \left(1 + \frac{Y_{F,0}W_{Ox}V_{Ox}}{Y_{Ox,0}W_FV_F}\right)^{-1}
$$

Constant amount of inert at flame fixes adiabatic flame temperature For example:

 $C_2H_4 + (3O_2 + 11.3 N_2) \rightarrow$ products $Z_{st} = .064$

 $(C_2H_4 + 11.3 N_2) + 3O_2 \rightarrow$ products $Z_{st} = .78$

 $T_{\rm ad} = 2370K$

Increasing stoichiometric mixture fraction:

• Increases Indee oxygen concentration in the high temperature region, thus strengthening the flame.

• Reduces the high-temperature region on the fuel-rich side, thus reducing soot inception.

Effect of Z_{st} on Extinction

Major Species and Temperature

Reaction Rates and Temperature

Flame 1: $\rm Z_{\rm st}\,{=}\,0.064$

 $Z_{\rm st} = 0.65$

Soot Inception Limits

Counterflow Diffusion Flames

 C_2H_4 **+** 30₂ + 11.3 N₂ \rightarrow products; (T_{ad} = 2371K)

Du and Axelbaum, C&F (1995)

Structure of Low and High Z_{st} Flames

OEC in Turbulent Jet Flames

 C_2H_4/Air $\rm Z_{\rm st}\,{=}\,0.064$ T_ad = 2370 K

 $C_2H_4 + CO_2/O_2$ $Z_{st} = 0.74$ T_ad = 2543 K Inverted

Objectives – Part A

Employing a Drop-tube furnace determine the effects of O_2 - CO_2 coal burning on:

- 1. the aerosol characteristics of submicrometersized particles
- 2. the capture efficiency of the particles by an electrostatic precipitator (ESP)
- 3. Mercury speciation

Experimental Setup

Aerosol Characteristics

Air vs. 20%O₂+80%CO₂

Air Burn

When AIR is replaced by $20\%O₂+80\%CO₂$:

- Geometric mean particle size decreases from 40 nm to 29 nm
- \bullet Total number concentration decreases from 6.4 x104 to 3.9 x104
- \bullet No effects on particle shape

Suriyawong et al, *Energy&Fuels,* 2006; 20(6) pp 2357 - 2363

Effect of Carbon Dioxide

Replacing $\,{\mathsf N}_2^{} \,$ (AIR) with CO $_2^{},$ results in:

1. slower ignition time for both coal and char particles *(Molina and Shaddix, 2005)*

2. lower temperature in the vicinity of burning coal particle, leading to slower vaporization

3. slower diffusion rate of O2 to the surface of char particle *(Molina and Shaddix, 2005)*.

HENCE, SUBMICROMETER AEROSOL FORMATION IS SLOWED

Effects of N₂/CO₂ mixture

- • N_2 has lower specific heat capacity than CO_2
- •Particle vicinity temperature increases with increasing N_{2} / CO₂ ratio
- • The geometric mean particle size and the total number concentration increase with increasing $\mathsf{N}_2/\operatorname{\mathsf{CO}}_2$ ratio.

Effects of O 2/CO 2 mixing ratio

Composition of Submicrometer Flyash

PRB Sub-bituminous Coal

Objectives - Charging Study

Collection efficiency of an ESP can be influenced by:

- Fraction of particles that carry charge before entering the ESP
- Particle charging efficiency inside the ESP
- 1. Determine fraction of submicrometer particles that carry charge at different combustion gas mixture (Conventional vs. $\mathrm{O}_2\text{-}\mathrm{CO}_2$).
- 2. Determine penetration of submicrometer particles through an ESP at a constant corona current for different gas compositions.
- 3. Evaluate corona inception voltage for different gas compositions.

Charged Fraction Determination

Calculation of Charged Fraction

Assumption :

- Charged particles acquire +1 or -1 charge (Jiang et al, *J. of Electrostatics, 2006)*
- Particles after neutralizer have equilibrium charge distribution

Charged fraction of submicrometer and ultrafine particles at the outlet of the combustor.

•The charged fraction for most sizes is slightly higher than equilibrium

• More positively charged particles found in larger particle sizes

•Fraction of charged particles are independent of combustion condition

Impact of Different Combustion Gases in Charging and Penetration

Penetration with positive ion generation with same corona current (0.5 μA)

 \bullet When N₂ is replaced by CO₂, penetration of particles increased by approximately 1- 2 orders of magnitude.

 \bullet In O $_2$ -CO $_2$ gas mixture, positive ions were generated in a much lower concentration compared to that generated in O_2 -N $_2$ gas mixture, resulting in higher particle penetration in $\mathrm{O}_2\text{-}\mathrm{CO}_2$ carrier gas

Ref: Suriyawong et al,*Fuel*, *Charged Fraction and Electrostatic Collection of Ultrafine and Submicrometer Particles Formed during O2-CO2 Coal Combustion,* (submitted)

Penetration with negative ion generation with same corona current (0.5 μA)

• Penetration of particles in O_2 -N $_2$ gas mixture is lower than $\mathrm{O}_2\text{-}\mathrm{CO}_2$ gas mixture

 \bullet lons $\,$ in $\rm O_2\text{-}N_2$ and $\rm O_2\text{-}CO_2$ formed in negative corona have similar mobility.

• Negative ion generation depend primarily on the presence of O_2 , presumably due to the formation of O_2^-

Mercury Speciation - Experimental Setup

Mercury concentration measured at the exit of the combustor

No significant difference in speciation of mercury in O_2 -CO $_2$ coal combustion versus air coal combustion

Lab-Scale Oxy-Coal Combustor

Burner Flow Capabilities

FLUENT Modeling of Iso-Strain Rates and Isotherms

Photographs of Coal Combustor

Effect of O_2 -Enrichment on Ultrafines

SMPS Spectra

4.5 kW, 200 Mesh Antelope Mine Coal, Swirl Number=0.35, 55% Excess O2

Conclusions

- $\bullet \;\; \mathsf{O}_2 \mathsf{CO}_2$ combustion results in delayed volatilization hence, mean size of submicrometer mode is smaller with less associated mass (more mass in coarse mode)
- •No significant differences in mercury speciation
- Submicrometer and ultrafine particles produced by coal combustion carry charge (thermal ionization as a primary mechanism).
- The fraction of particles carrying charge is not dependent on combustion gas composition.

Conclusions, cont.

- • With positive applied voltage, penetration of submicrometer and ultrafine particles are orders of magnitude higher in O₂-CO₂ magnitude higher in O₂-CO₂ gas mixtures as compared
to O₂-N₂ gas mixtures. $\mathrm{O}_2\text{-}\mathrm{N}_2$ gas mixtures.
- • With negative applied voltage, relatively little difference on penetration when replacing N₂ with CO₂.
- ESP with positive applied voltage requires higher energy input for $\mathrm{O}_2\text{-}\mathrm{CO}_2$ input for O₂-CO₂ gas mixtures to produce the same
corona current as O₂-N₂ gas mixtures. $\mathsf{O}_2\text{-}\mathsf{N}_2$ gas mixtures.

Conclusions, cont.

- Flame extinction and sooting-limit studies indicate that stronger, less sooty flames can be obtained by increasing Z_{st} (i.e., in oxy-fuel flames).
- The extinction temperature can be minimized by matching radical production zone with peak temperature.
- Oxygen-enrichment provides a flexible tool for design of combustion systems in ways that heretofore may not have been realized.

Acknowledgements

- • Department of Energy DOE-UCR under the technical direction of Kamal Das
- Ameren UE., St.Louis, MO

Washington University in St. Louis 屬