

Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

A. Campos¹, J. J. Spivey¹, A. Adeyiga², J. G. Goodwin, Jr.³

¹Cain Department of Chemical Engineering, 110 Chemical Engineering, South Stadium Road, Baton Rouge, LA 70803
²Department of Chemical Engineering, Hampton University, Hampton, Virginia 23668
³Department of Chemical and Biomolecular Engineering, Clemson University, 127 Earle Hall, Clemson, SC 29634-0909

Coal Energy potential

- Four times energy equivalent in coal than oil reserves in the Middle East [IEO 2006]
- Economically competitive in the US with high crude oil prices (<\$50) [Tullo 2003]

Mass of fossil fuel reserves by location	Energy equivalent (BTUs)
1009 billion short tons of coal in the US	2.1×10^{19}
734.4 billion barrels of oil in the Middle East	4.3×10^{18}
2565 trillion cubic feet of natural gas in the Middle East	2.6×10^{18}

Table 1 – Energy reserves in US coal compared to Middle East fossil fuels [1]

Fischer-Tropsch plants in production

• Sasol creating FT facilities in Qatar and Nigeria for production of liquid fuels

Table 2. Near-term Fischer Tropsch plants [Anon 2004]	
	Plant site	
	Nigeria, Escravos	Qatar, Ras Laffan
Scheduled startup	2007	2005
Design capacity (Mbpd)	34	34
F-T unit technology	Sasol	Sasol
Investment estimate/daily capacity barrel (\$/bbl)	23,500	23,500

Engineering issues of FT process

- Difficult to control selectivity from C_1 - C_{60} +
 - Counteracted with promoters (K, Cu) and hydrocarbon cracking catalyst as the support
- Highly exothermic reaction
 - Inert liquid in SBCR can remove the heat
- Severe attrition of catalysts
 - Using spent FCC catalysts can counter this
- Cost effectiveness versus petroleum
 - Rising cost of oil in the free market reduces and improved C_{10} - C_{20} selectivity reduces this issue

Why design a SBCR FT catalyst?

- Sasol has a 10 year commercial operable SBCR for 2500 b/d (Davis 2003)
- Comparatively low reactor initial investment
- Inert fluid can quickly remove the highly exothermic FT reaction
- Permits high catalyst and reactor productivity

Why consider spent FCC catalysts as a support?

• Cost effective, <u>attrition resistant</u>, abundant, and comparable to fresh FCC catalysts

	Spent	Fresh
Cost (\$/lb)	0.075-0.34	0.75-1.50
Size distribution (µm)	40-150	40-150
Fines (% <40µm)	Negligible	30
BET surface area	50-175	>300
5 hour attrition loss (%)	0.4	2.6
20 hour attrition loss (%)	1.2	8.0

Table 3 – Comparison between spent FCC and fresh catalysts

Why iron?

- Low H₂:CO (~0.5-0.7) ratio in biomass and coal
 - Iron exhibits the water gas shift reaction (CO + $H_2O \leftrightarrow CO_2 + H_2$) whereas Co does not
- Cost effectiveness of Fe versus Co
- Chemical promoters can improve selectivity
 - Alkali promoters (K) suppress light end products
 - Ce, K increase activity and decrease $< C_{20}$ formation [Fiato et. al., 1998]

Timetable for research

- Currently beginning year two of research
- No deviation from timetable
- Hampton University group working on tasks 1-4
- LSU group working on task 4

Spent FCC catalysts ICP/MS results						
	FCC-1	FCC-2	FCC-3	FCC-4	FCC-5	FCC-6
Al	20.68	22.05	20.6	21.3	16.9	20.7
Ca	0.023	0.039	0.34	0.18	0.35	0.13
Fe	0.58	0.54	1.25	0.75	0.69	1.1
Ni	0.051	0.025	0.013	0.05	0.003	0.092
Pt	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Si	23.89	21.87	23.78	24.16	29.36	23.82
Ti	0.7	0.71	0.85	0.88	0.34	0.84
V	0.084	0.081	0.084	0.17	0.027	0.24
Zn	0.009	0.23	0.009	0.008	0.003	0.031
Zr	0.018	0.008	0.005	0.008	0.004	0.004
Si:Al	1.16	0.99	1.15	1.13	1.74	1.15
		Table 4 -	– Bulk analysis	of elements		

BET results

• FCC-1, FCC-4 catalysts have highest BET surface areas (all within ~50%)

Sample ID	BET surface area (m²/g)		
FCC-1	158.1		
FCC-2	101.7		
FCC-3	112.3		
FCC-4	153.0		
FCC-5	136.9		
FCC-6	106.4		
Table 5 – BET surface area of spent FCC catalysts			

Reaction results

- CO conversion and product distribution are encouraging as a proof of concept
- Reaction performed at mild Fischer-Tropsch conditions (to prevent liquid products)

15 % Fe supported on spent FCC catalyst (unpromoted)		
% CO conversion	23.6	
Hydrocarbon product distribution, wt. percentages		
\mathbf{C}_1	20.6	
$C_2 - C_4$	53.2	
C ₅ +	26.2	
	15 % Fe supported on spent FCC catalyst (un % CO conversion Hydrocarbon product distribution, wt. perc C_1 C_2-C_4 C_5+	15 % Fe supported on spent FCC catalyst (unpromoted)% CO conversion23.6Hydrocarbon product distribution, wt. percentages C_1 20.6 C_2 - C_4 53.2 C_5 +26.2

Table 6 - Fixed bed reactor results, T=250°C, 1MPa, H₂/CO=1, WHSV=0.77hr⁻¹

Conclusions

- Little difference in commercial spent FCC catalysts in bulk composition and BET (surfaces may be different, future work will resolve this)
- Unpromoted Fe-supported on FCC shows moderate FT activity

Future work

- Further characterization (CO₂ TPD, H₂ TPR, CO TPD) and reaction testing on both spent FCC materials and Fe on FCC will be interesting
- If attrition testing gives favorable results Fe on spent FCC catalyst this may develop a future catalyst in SBCR FTS reactors

References

- 1. International Energy Outlook. 2006 [cited; Available from: www.eia.doe.gov/oiaf/ieo/index.html.
- 2. Tullo, A.H., C&E News, 89(21), July 21, 2003.
- 3. Anon, 2004, information from www.syntroleum.com and www.sasol.com; see also
- 4. Bukur DB, Carreto-Vazquez V, Pham HN, Datye AK, Appl. Catal. A, 266 (1): 41-48, 2004.
- 5. Bukur, D.B., Okabe, K., Li, C., Wang, D., and Huffman, G.P., J. Catal., 155, 353(1995a).
- 6. Bukur, D.B., Nowicki, L., Manne, R.K., and Lang, X., J. Catal., 155, 366(1995b).
- 7. Iglesia et al., J. Catal., 153, 188(1995).
- 8. Jothimurugesan, K., Spivey, J.J., Gangwal, S.K., Goodwin, Jr., J.G., *Catal. Today*, In Press (1999a).
- 9. Jothimurugesan, K., Spivey, J.J., Gangwal, S.K., Goodwin, Jr., J.G., ACS Preprints, *Volume* 44, No. 1, 111-114 (1999b).
- 10. Srivastava, R.D., Rao, V.U.S., Cinquegrane, G., and Stiegel, G.J., *Hydrocarbon Processing*, 1990.
- 11. Sudsakorn K, Goodwin J. G., Jothimurugesan K, Adeyiga A. A., I &EC Res., 40 (22): 4778-4784, 2004.

Acknowledgements

- We would like to thank the DOE grant DE-FG26-06NT42744 for funding this project
- Drs. Adeyiga et. al., Goodwin and Spivey for their work and help in the project

