Multiplexed Sensor for Synthesis Gas Composition and Temperature

#DE-FG26-04NT42172 Program Manager: Robie Lewis

Reza Gharavi and Steven G. Buckley

Center for Energy Research, Department of Mechanical and Aerospace Engineering University of California San Diego

Objectives

The overall goal of this project is to develop a highly sensitive, multiplexed TDL-based sensor for CO2, CO, H2O (and temperature), CH4, H2S, and NH3. Such a sensor will be designed with socalled "plug-and-play" characteristics to accommodate additional sensors, and will provide situ path-integrated in measurements indicative of average concentrations at speeds suitable for direct gasifier control. The project will develop the sensor and culminate in a real-world test of the sensor. The products of this research are expected to have a direct impact on gasifier technology and the production of highquality syngas, with substantial broader application to coal and other energy systems.

Hardware and Software

Several lasers can be simultaneously multiplexed down a single transmission fiber, captured on a single detector, and demodulated in software.

Method - WMS

• Modulation of the laser(s) followed by lock-in detection of laser signal(s) rejects noise and yields 1-2 orders of magnitude improvement in sensitivity over direct absorption.

• Several lasers can be multiplexed in a single fiber and demultiplexed using frequency- and phase-sensitive detection.

• Proven using our UCSD laboratory and in field settings.

Modulation scheme

Advanced LabviewTM software controls system

Flexible software written using National Instruments' Labview[™] allows adjustment of parameters and saving of data.

Acknowledgements: The authors are grateful for funding from the U.S. Department of Energy Grant #DE-FG26-04NT42172, and guidance from contract monitor Mr. Robie Lewis

Multiplexed Sensor for Synthesis Gas Composition and Temperature

#DE-FG26-04NT42172 Program Manager: Robie Lewis

Reza Gharavi and Steven G. Buckley

Center for Energy Research, Department of Mechanical and Aerospace Engineering University of California San Diego

Spectroscopy

Measurement of a) Line location, b) line strength (function of T), and c) broadening coefficients for multiple bath gases
Accomplished for CO, CO₂, CH₄, H₂O, H₂S, and NH₃

Lin e	v ₀ (cm- ⁻¹)	v _e (cm- ⁻¹) [†]	v ₀ (cm- ⁻¹) [‡]	S ₀ (cm- ⁻² atm- ⁻¹)	σνθ	σ ₅₀
1	6612.937	-	-	0.0031	0.001	0.0003
2	6612.831	6612.827	-	0.0386	0.000	0.0003
3	6612.748		6612.734	0.0194	0.000	0.0002
4	6612.723	6612.718	6612.723	0.0503	0.000	0.0010
5	6612.702		6612.695	0.0261	0.001	0.0006
6	6612.669	6612.667	-	0.0316	0.001	0.0009
7	6612.617		6612.615	0.0102	0.000	0.0006
8	6612.246		-	0.0173	0.000	0.0002
9	6611.961		-	0.0203	0.001	0.0002

Spectroscopy example for NH₃: Line locations (left), measurement of multiple lines (with overlap) of NH₃, modeled and measured spectrum at nearly stack conditions.

Integrated laser control box

M. Gharavi and S.G. Buckley, "Pressure broadening parameters of H2O absorption transitions of 2v1 and 2v2+v3 bands at elevated temperatures," submitted, Journal of Quantitative Spectroscopy & Radiative Transfer.

M. Gharavi and S.G. Buckley, "Calibration-free wavelength modulation spectroscopy for temperature and H2O concentration measurement using a single diode laser," submitted, Applied Optics

"Patent pending"

gas turbine stack. Photo at left, data above.

Accomplishments

Good progress has been made on this project.

Significant accomplishments include:

- Innovations in sensor design and instrument development, the subject of several disclosures to the UCSD technology transfer office;
- Continuous improvements in our understanding of the high-temperature near-infrared spectroscopy related to the molecules under study; and
- Demonstration of a flexible multi-gas sensor with numerous potential applications.

Acknowledgements: The authors are grateful for funding from the U.S. Department of Energy Grant #DE-FG26-04NT42172, and guidance from contract monitor Mr. Robie Lewis

