

NERSC Accomplishments and Plans

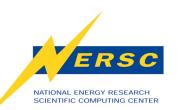
Katherine Yelick NERSC Director Lawrence Berkeley National Laboratory

NERSC is the Primary Computing Facility for the Office of Science

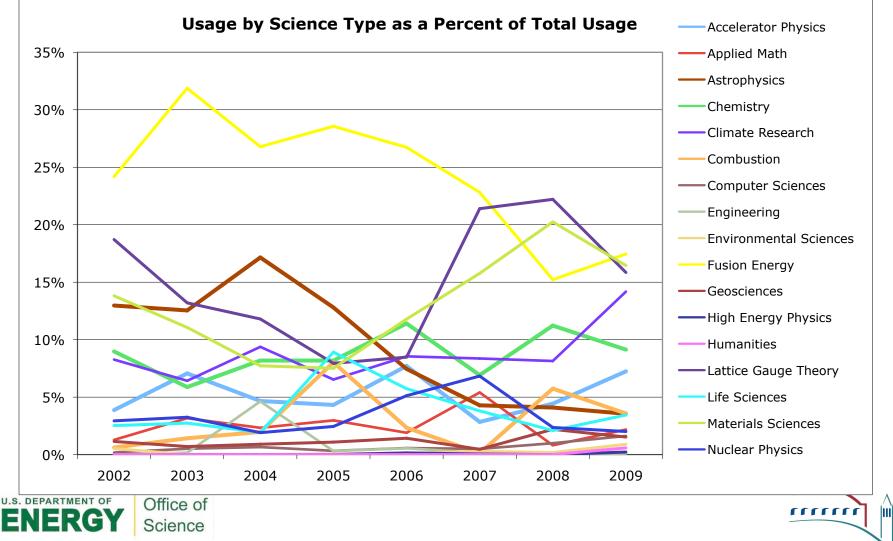
•NERSC serves a large population

Approximately 3000 users, 400 projects, 500 code instances

- Focus on "unique" resources
 - -High end computing systems
 - -High end storage systems
 - File system and tape archive
 Interface to high speed networking
 - _


Science-driven

- Science problems used in machine procurements and performance metrics
- -Science services



2009 Allocations **ASCR** NP 10% 7% BER **HEP** 19% 17% **FES** 18% BES 29%

Workload Changes Over Time with DOE Priorities

BERKELEY LAE

ASCR's Computing Facilities

NERSC at LBNL

- 1000+ users,100+ projects
- Allocations:
 - 80% DOE program manager control
 - 10% ASCR Leadership
 Computing Challenge*
 - 10% NERSC reserve
- Science includes all of
 DOE Office of Science
- Machines procured

LCFs at ORNL and ANL

- 100+ users 10+ projects
- Allocations:
 - 80% ANL/ORNL managed INCITE process
 - 10% ACSR Leadership Computing Challenge^{*}
 - 10% LCF reserve
- Science limited to largest scale; no limit to DOE/SC
- Machines procured through partnerships

NERSC 2009 Configuration

Large-Scale Computing System

Franklin (NERSC-5): Cray XT4

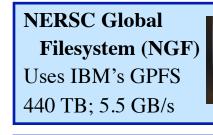
- 9,532 compute nodes; 38,128 cores
- ~25 Tflop/s on applications; 356 Tflop/s peak

Hopper (NERSC-6): Cray XT

- Phase 1: Cray XT5, 668 nodes, 5344 cores
- Phase 2: > 1 Pflop/s peak

Jacquard and Bassi

U.S. DEPARTMENT OF


ERC

- LNXI and IBM clusters
- Upgrading to Carver (NCS-c) PDSF (HEP/NP)

Office of

Science

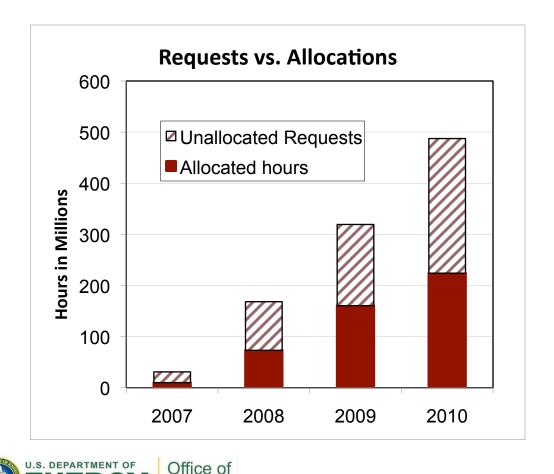
• Linux cluster (~1K cores)

HPSS Archival Storage

- 59 PB capacity
- 11 Tape libraries
- 140 TB disk cache

Analytics / Visualization **Davinci (SGI Altix)**

- Tesla • testbed
 - Upgrade planned



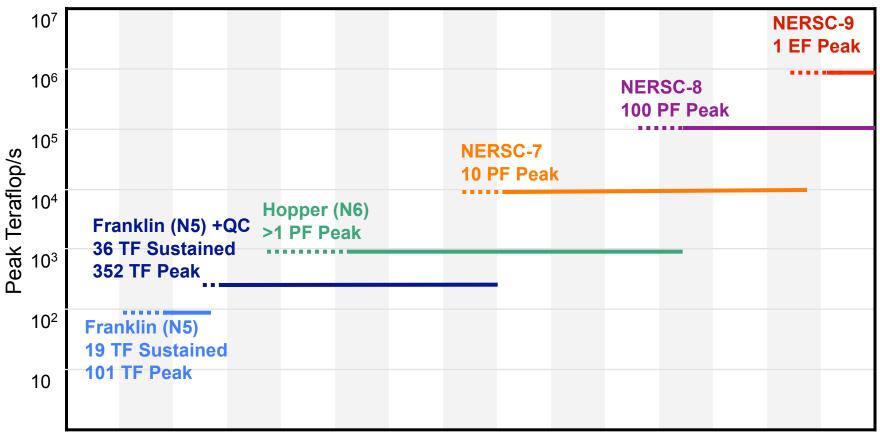
Demand for More Computing

Compute Hours Requested vs Allocated

Science

- Each year DOE users requests ~2x as many hours as can be allocated
- This 2x is artificially constrained by perceived availability
- Unfulfilled allocation requests amount to hundreds of millions of compute hours in 2010

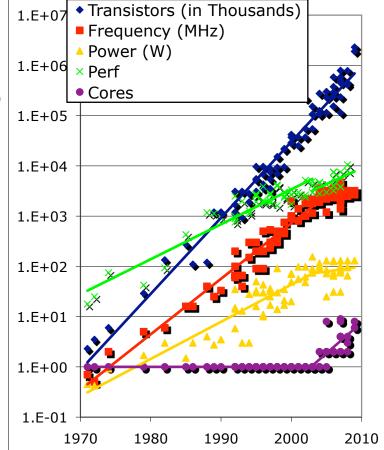
NERSC Initiative for Scientific Exploration (NISE)


- For remainder of AY 2009, 10M hours available for
 - New research problems not covered by existing ERCAP allocation, especially high risk/high impact science
 - New programming techniques that take advantage of multicore compute nodes
 - Code scaling to higher concurrencies for codes that scale on projects limited by current allocation

NERSC System Roadmap

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

- · Goal is two systems on the floor at all times
- Systems procured by sustained performance (10% of peak?)



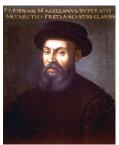
BERKELEY LAB

Center of Excellence with Cray

- NERSC/Cray "Programming Models" Center of Excellence" combines:
 - Berkeley Lab strength in advanced programming models, multicore tuning, and application benchmarking
 - Cray strength in advanced programming models, optimizing compilers, and benchmarking
- Immediate question:
 - Best way to use cores in N6 node
 - MPI, OpenMP, UPC/CAF, Pthreads,...
- Long term necessity for exascale:
 - Massive on-chip concurrency necessary for reasonable power use
 - 3M for 1PF today \rightarrow 3 GW for 1 EF (or

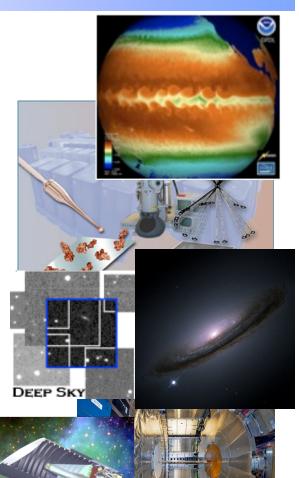
10 100PF) tomorrow? Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten, and Krste Asanoviç

Office of Science



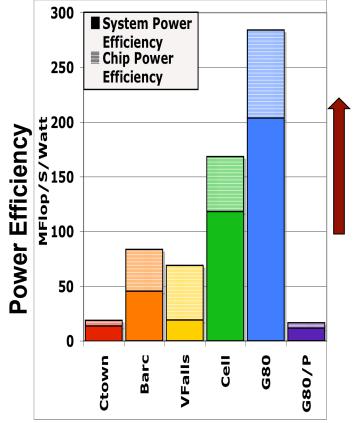
DOE Explores Cloud Computing

- ASCR Magellan Project
 - \$32M project at NERSC and ALCF
 - ~ 100 TF/s compute cloud testbed (across sites)
 - Petabyte-scale storage cloud testbed
- Cloud questions to explore on Magellan:
 - Can a cloud serve DOE's mid-range computing needs?
 - → More efficient than cluster-per-PI model
 - What part of the workload can be served on a cloud?
 - What features (hardware and software) are needed of a "Science Cloud"? (Eucalyptus at ALCF; Linux at NERSC)
 - How does this differ, if at all, from commercial clouds?



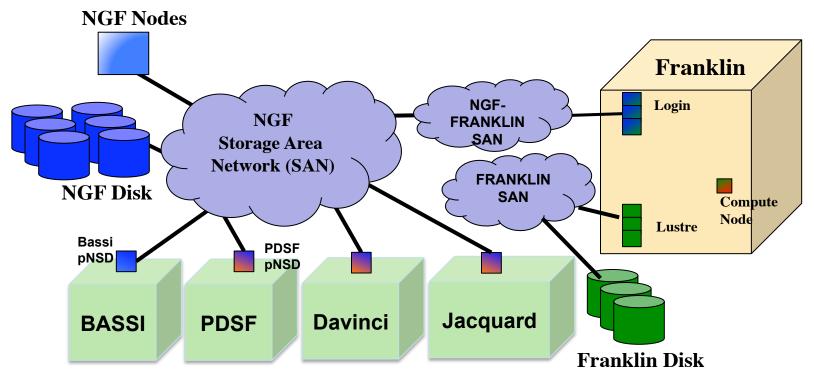
Data Driven Science

- Ability to generate data is exceeding our ability to store and analyze it
 - Simulation systems and some observational devices grow in capability with Moore's Law
- Opportunity to lead creation of scientific communities around data sets
- A science gateway is a set of hardware and software for remote data/services
 - Deep Sky "Google-Maps" of astronomical image data: 36 supernovae in 6 nights
- Petabyte data sets will be common:
 - Climate modeling: IPCC will be 10s of petabytes
 - Genome: Genomes will double each year
 - Particle physics: LHC is projected to produce 16 petabytes of data per year



Tesla/Turing GPU Testbed

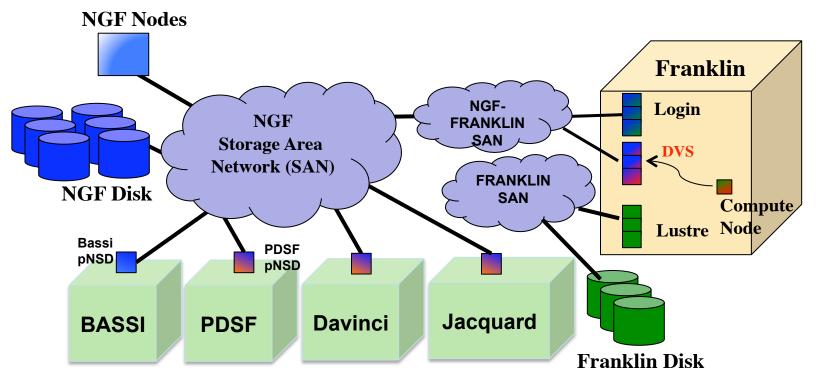
- 2-node testbed with shared-memory GPU architecture on each node
- Goal 1: application experience
 - Can science computation use GPUs?
- Goal 2: administration experience
 - Batch queues and GPUs (GPU/CUDA, OpenGL/vis)
- Goal 3: visualization experience
 - Remote delivery of hardware-accelerated graphics/vis
- Goal 4: large memory workload
- 256 GB of shared memory
- Note: testbed, not production machine!



Mflops / Watt of 3D Stencil

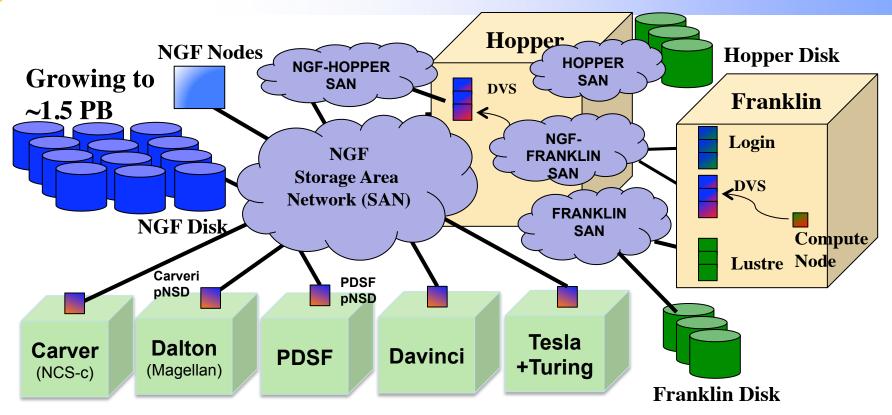
NERSC Global File system (NGF)

- A facility-wide, high performance, parallel file system
 - Uses IBM's GPFS technology for scalable high performance
 - The /project file system in NGF from all NERSC systems
 - Intended for data that is shared across machines or users in a project



Office of See: <u>http://www.nersc.gov/nusers/services/proj.php</u>

NERSC Global File system (NGF)


- Announcing access to NGF from Franklin compute nodes
 - Effective immediately /project is available on Franklin compute nodes
 - Uses Cray DVS (Data Virtualization Services) software
 - Expect ~4GB/s from /project vs. ~10GB/s from /scratch or /scratch2

BERKELEY LAB

NERSC Global File system (NGF)

- Coming soon to NGF
 - Additional storage, up to ~1.5 PB total
 - Access to NGF from new systems: Carver (replacing Jacquard and Bassi); Dalton (the Magellan testbed); Tesla & Turing (GPU testbed)

BERKELEY LAB

HPSS at NERSC

NERSC has been archiving data with HPSS since 1998

- The total data volume increases by ~50% annually NERSC has two HPSS systems:
- An <u>Archive</u> system that stores user files optimized for high-transfer rates; about 66M files in 2009
- A <u>Backup</u> system for NGF; about 12M files in 2009 HPSS averages 100 MB/s, with peaks to 450 MB/s

HPSS Capacity Media/Drive Planning

HPSS Upgrades and Plans

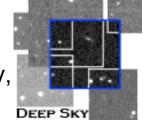
- Increased bandwidth
 - Franklin increased load on HPSS by 50%
 - New movers and servers; new clients on all NERSC systems
- Increased capacity through new hardware / tapes
 - 3 new storage libraries in past 2 years; 1 more in 2010
 - Currently have max capacity of 59 PB if filled with 1 TB tapes
 - 1 ½ year repack (40K tapes onto 10K 1 TB tapes) underway
- Ease of use improvements
 - Upgraded software to HPSS version 6.2
 - Integrated HPSS into NIM for account/password management
 - Improved MTBI from ~5 days in 2008 to ~9 days 2009.
- Evaluating new clients for bandwidth and functionality
 - rsynch, conditional stores, and dynamic file aggregation

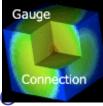
BERKELEY LAB

Services for Science

Reservations at NERSC

- Reservation service being tested:
 - Reserve a certain date, time and duration
 - Debugging at scale
 - Real-time constraints in which need to analyze data before next run, e.g., daily target selection telescopes or genome sequencing pipelin
 - At least 24 hours advanced notice
 - <u>https://www.nersc.gov/nusers/services/</u> reservation.php
 - Successfully used for IMG run, Madcap, IO
 benchmarking, etc.



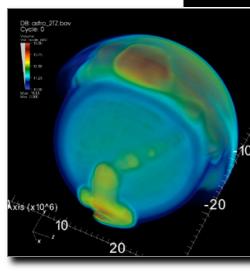


Science Gateways at NERSC

- Create scientific communities around data sets
 - Models for sharing vs. privacy differ across communities
 - Accessible by broad community for exploration, scientific discovery, and validation of results
 - Value of data also varies: observations may be irreplaceable
- A science gateway is a set of hardware and software that provides data/services remotely
 - Deep Sky "Google-Maps" of astronomical image data
 - Discovered 140 supernovae in 60 nights (July-August 2009)
 - 1 of 15 international collaborators were accessing NGF data through the Se nodes 24/7 using both the web interface and the database.
 - Gauge Connection Access QCD Lattice data sets
 - Planck Portal Access to Planck Data
- Building blocks for science on the web
 - Remote data analysis, databases, job submission

Visualization Support

Petascale visualization: Demonstrate visualization scaling to unprecedented concurrency levels by ingesting and processing unprecedentedly large datasets.


Implications: Visualization and analysis of Petascale datasets requires the I/O, memory, compute, and interconnect speeds of Petascale systems.

Accomplishments: Ran Vislt SW on 16K and 32K cores of Franklin.

• First-ever visualization of two *trillion* zone problem (TBs per scalar); data loaded in parallel.

Petascale visualization

Plots show 'inverse flux factor,' the ratio of neutrino intensity to neutrino flux, from an ORNL 3D supernova simulation using CHIMERA. **b**

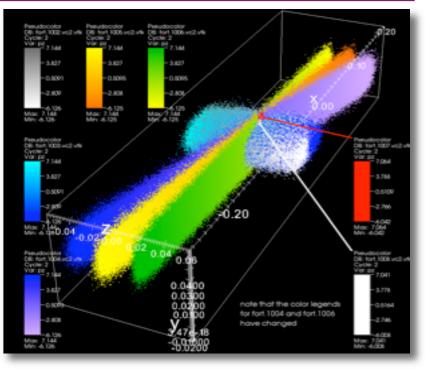
Isocontours (a) and volume rendering (b) of two trillion zones on 32K cores of Franklin.

Я

HEP: Accelerator Modeling

Objective: Use INCITE resources to help design and optimize the electron beam for LBNL next-generation Free Electron Laser.

Implications: Numerically optimizing the beam lowers cost of design / operation and improves X-ray output, helping scientific discovery in physics, material science, chemistry and bioscience.


Accomplishments: Code includes selfconsistent 3D space-charge effects, shortrange geometry & longitudinal synchrotron radiation wakefields, and detailed RF acceleration / focusing.

- *Billion*-particle simulation required for details of high brightness electron beams subject to microbunching instability.
- Key NERSC visualization support.

NERSC:

- 400k hours used in 2009 (~50% of allocation).
- Uses IMPACT code, part of NERSC6 test suite.

PI: J. Qiang (LBNL)

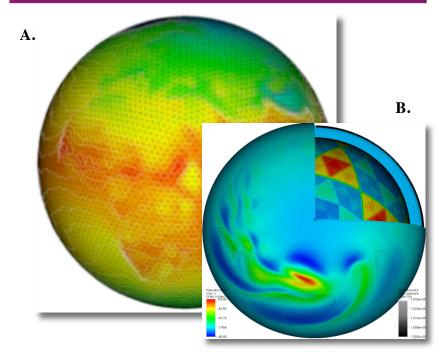
Visualization of an electron beam bending and changing orientation as it passes through a magnetic bunch compressor.

Proc. Linac08 Conference

Cloud-Resolving Climate Model

Objective: Climate models that fully resolve key convective processes in clouds; ultimate goal is 1-km resolution.

Implications: Major transformation in climate/weather prediction, likely to be standard soon, just barely feasible now.


- Accomplishments: Developed a coupled atmosphere-ocean-land model based on geodesic grids.
 - Multigrid solver scales perfectly on 20k cores of Franklin using grid with 167M elements.
 - Invited lecture at SC09.

NERSC:

- 2M hour allocation in 2009.
- NERSC/LBNL played key role in developing critical I/O code & Viz infrastructure to enable analysis of ensemble runs and icosohedral grid.

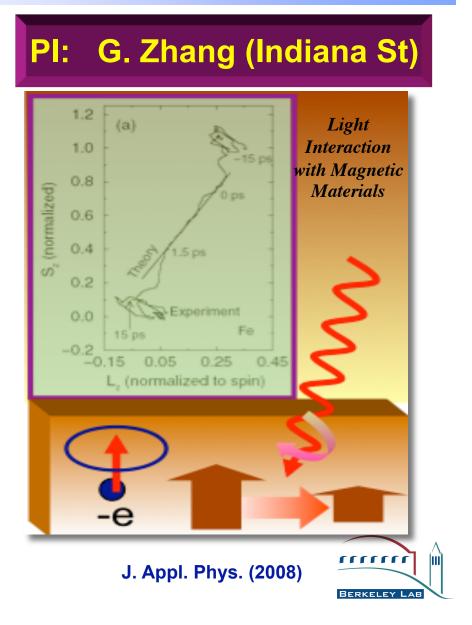
UCICITUS

PI: D. Randall, Colo. St

A. Surface temperature showing geodesic grid. B. Composite plot showing several variables: wind velocity (surface pseudocolor plot), pressure (b/w contour lines), and a cut-away view of the geodesic grid.

Material Science: Optical Data Storage

Objective: Explore ultrafast optical switching of nanoscale magnetic regions.


Implications: Potential for laser operated hard drives, 1000s of times faster than today's technology.

Accomplishments: First-principles, time- & spin-dependent DFT study using locally-designed code on laser-irradiated Ni.

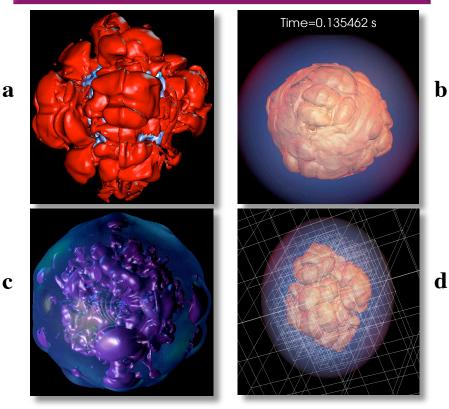
- Discovered that light leverages the crystal structure to transfer spin of electrons to higher orbit
- Study is the first to clearly demonstrate that this phenomenon is a relativistic effect connected with electron spin.
- Discovery matches experiment and can guide synthesis of new materials.

NERSC:

• 1.5 M hours in 2009; typically using 2,800 cores.

Supernova Core-Collapse

Objective: First principles understanding of supernovae of all types, including radiation transport, spectrum formation, and nucleosynthesis.


Implications: Will help confront one of the greatest mysteries in high-energy physics and astronomy -- the nature of dark energy.

Accomplishments: NERSC runs of VULCAN core collapse explain magnetically-driven explosions in rapidly-rotating cores.

- First 2.5-D, detailed-microphysics radiation-magnetohydrodynamic calculations; first time-dependent 2D radhydro supernova simulations with multigroup <u>and</u> multi-angle transport.
- CASTRO, new multi-dimensional, Eulerian AMR hydrodynamics code that includes stellar EOS, nuclear reaction networks, and self-gravity.

Pls: S. Woosley (UCSB), A. Burrows (Princeton)

The exploding core of a massive star. a), b), and c) show morphology of selected isoentropy, isodensity contours during the blast; (d) AMR grid structure at coarser resolution levels."

BERKELEY LAB

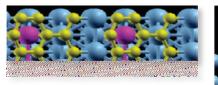
Chemistry: Improving Catalysis

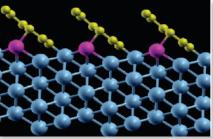
Objective: First-principles studies to develop better catalytic processes.

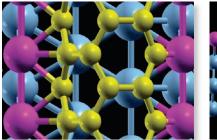
Implications: Improved power sources such as lithium-ion batteries, fuel cells.

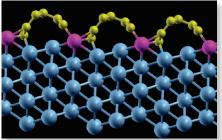
Accomplishments: DFT studies of catalyzed single-walled carbon nano-tube growth on Cobalt nano-particles.

- Predict most stable adsorption sites.
- Carbon atoms form curved & zigzag chains in various orientations – some are likely precursors to graphene.
- Showed strong preference for certain metal sites.
- Next step is to investigate growth on chiral surfaces


NERSC:


• VASP / CPMD on Franklin; .7M hour alloc..




Office of Science

PI: P. Balbuena, Texas A&M

Simulation showing carbon atom chains (yellow) on cobalt surfaces (blue & pink).

J. Phys. Chem. C, Sept, 2009 Cover Story

Fusion: Gyrokinetic Modeling

0.2

0.3

0.2

-0.1

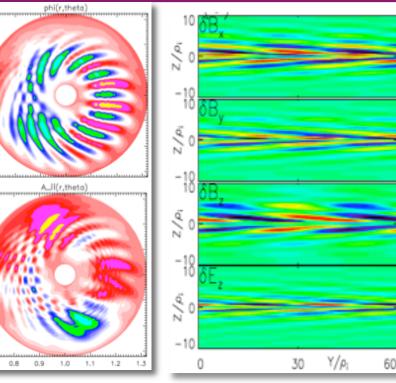
-0.5

Objective: Comprehensive first-principles simulation of energetic particle turbulence and transport in ITER-scale plasmas.

Implications: Improved modeling of fusion systems is essential to achieving the predictive scientific understanding needed to make fusion safe and practical.

Accomplishments: GTC simulation explains measurement of fast ion transport in General Atomics DIII-D tokamak shot.

 Diffusivity decreases drastically for highenergy particles due to averaging effects of large gyroradius and banana width, and fast wave-particle decorrelation.

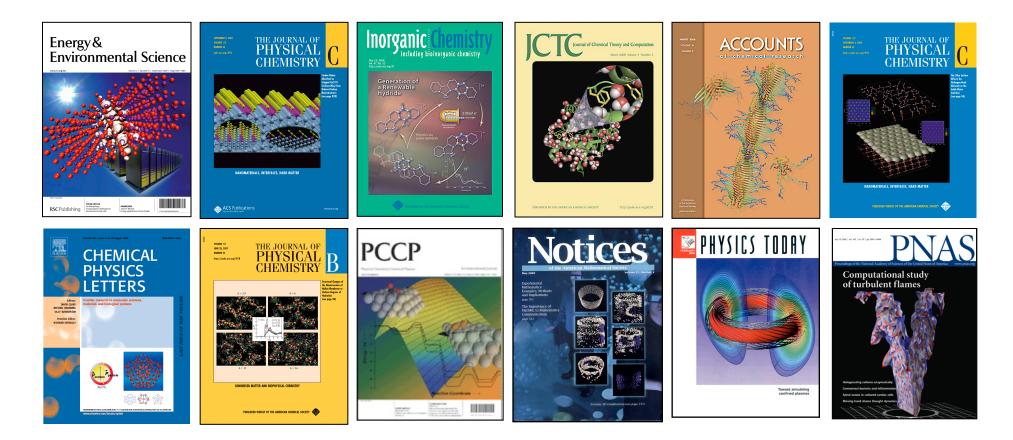

3 Fall 2009 invited talks.

NERSC: 4M hours used in 2009; GTC part of NERSC6; 15-hour, 6,400-node run in March, 09

Office of Science

Gyrokinetic simulation with kinetic electrons using a hybrid model in GTC.

Comm Comp Phys (2009)


2-D Electromagnetic field fluctuations in a simulated plasma due to microinstabilities in the current.

Phys Plas. (2008)

Cover Stories from NERSC Research

NERSC is enabling new science in all disciplines, with about 1,500 refereed publications per year

28

