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Motivation/Outline

• Need fast turnaround time for EM/Plasma Simulations
– Particle in Cell (PIC)

– Finite-Difference Time-Domain (FDTD)

• Coarse grain parallelization has its limits 
– Local problems getting too small

– “time does not parallelize”

– Access to large systems can be painful

• Many algorithms memory bandwidth limited
– Almost no data reuse -> caches useless

– Multi-core CPU makes it even worse

 Need high memory bandwidth accelerator

Outline
• GPU architecture, programming

• GPULib: A rapid GPU code development environment

• Implementation of EM algorithms on GPU

• Conclusion



Why scientific computing on GPUs? 
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NVIDIA GPUs
A Collection of Specialized SIMD Processors

• Silicon used for ALUs, rather than large caches
– Up to 240 processing elements (“thread processors”, TP)

– running at 1.3 GHz, statically scheduled, 2 instructions / cycle

– Small software managed caches (“shared memory”, Shrd Mem)

• Organized as ‘Multi-processors’ (~ SIMD processors)
– Software managed caches shared within one multi-processor

– Synchronization within MP, no light-weight global synchronization

• Active thread management
– Work on next thread-set while waiting for a memory request
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Cache

CPU

The large memory bandwidth on GPUs can 
benefit many scientific computing applications
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The Flipside: GPUs need regular memory access 
(but newer generation GPUs are getting less picky)

No problem on C1060 and newerIdeal access pattern



The future: Fermi introduces 
new level of flexibility

• Multiple kernels executed concurrently
– Better performance on kernels with low degree of parallelism

• Hardware managed L1, L2 caches
– Relaxes coalescing requirements 

• C++ support on device

• Enhanced atomic performance• Enhanced atomic performance

• ECC for reliable scaling 



Oxygen: Tech-X’ Production cluster with 
GPU accelerated nodes

• 32 nodes, each with dual quad core Opteron

• 8GB RAM per node

• Infiniband interconnect

• Lustre file system

• 4 nodes accelerated with 2 Tesla GPU blades



CUDA: Development Environment 
for NVIDIA GPUs

• Early GPGPU efforts heroic
– Graphics API (OpenGL, DirectX) no natural fit for scientific computing

• Compute Unified Device Architecture (http://www.nvidia.com/cuda)
– Supported on all modern NVIDIA GPUs (notebook GPUs, high-end GPUs, mobile devices)
– Co-Existence with OpenCL (OpenCL basically *IS* CUDA)

• Single Source for CPU and GPU
– Host code C or C++ 

– GPU code C(++) with extensions– GPU code C(++) with extensions
• “Kernel” describes one thread
• Host invokes a collection of threads

– nvcc: NVIDIA cuda compiler 

• Runtime libraries
– Data transfer, kernel launch, ..

– BLAS, FFT libraries

• Simplified GPU development, but still “close to the metal”!

• NEXUS: Visual Studio plug-in for GPU development



• IDL (ITT Vis), MATLAB (Mathworks)
C, Fortran 

• Rich set of data parallel kernels

• Extensible with proprietary kernels

• Seamless integration into host language

GPULib:
High-Productivity GPU Computing

• Seamless integration into host language

• Explicit or implicit management of address spaces

• Interface to Tech-X’ FastDL for multi-GPU/DMPP computing 

http://gpulib.txcorp.com 
(free for non-commercial use)

Messmer, Mullowney, Granger, “GPULib: GPU computing in High-Level Languages”, Computers in 
Science and Engineering, 10(5), 80, 2008.



GPULib’s Extensible Architecture

GPULib wrappers 
(language specific, includes software emulator)

GPULib wrappers 
(language specific, includes software emulator)

GPULib Host Language Interface (IDL, MATLAB)GPULib Host Language Interface (IDL, MATLAB)

GPULib wrappers 
(language specific, includes software emulator)

GPULib Host Language Interface (IDL, MATLAB)
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An example of using 
GPULib in IDL

CPU
GPU

X X_gpuIDL> x_gpu = gpuPutArr(x)

IDL> gpuinit

y y_gpu
IDL> y = gpuGetArr( y_gpu )

IDL> y_gpu = gpuSin( x_gpu ) 

Sin()Sin()Sin()
x_gpu

y_gpu

IDL> gpuFree, x_gpu, y_gpu



GPULib is currently used in a broad 
range of applications

• Simulation / Modeling
– Neutron scattering experiments
– Computational Fluid Dynamics (CFD)
– Linear optimization
– Tsunami modeling
– Option pricing
– Convection zone in stars
– Galaxy formation– Galaxy formation
– Neural tissue simulations

• Data analysis
– Image enhancement, deblurring
– Real-time image processing
– Synthetic Aperture Radar (SAR)
– Hyperspectral imaging
– Astronomical imaging
– Medical imaging

– Seismic data processing



Key to performance: Multiple kernel 
invocations per CPU-GPU transfer

Kernel only

Single invocation

Sin(x)

ax+by+c

lgamma(x)

exp(x)

Vector length

Vector length

10 invocations

x+y

exp(x)



GPU accelerated FDTD 
Implementation with GPULib

• FDTD usually implemented as stencil operation
– Traverse e.g. E mesh
– Grab B values necessary for updating E
– Special treatment for domain boundaries 
– Interior boundaries: do not update ‘outside’

• Problem 1: Short vector operations
• Problem 2: Poorly aligned boundaries• Problem 2: Poorly aligned boundaries
• Problem 3: Skipping cells

• Solution: Treat 3D domain as large 1D vectors
– Shifted vector operations ‘cheap’ 

• Pointer arithmetic possible on GPUs
– ‘Dirt’ at domain boundaries due to wrap-around

• Removed by applying boundary conditions

– Accept ‘unnecessary’ work



                













       

      





















3D FDTD in GPULib

• 3D FDTD
– Cut-Cell or stair-stepped boundaries
– Uses VORPAL geometry output

• Performance 
– Up to 400 Mcells/s on

• ~70% theoretical memory bandwidth
– ~10 Mcells/s on CPU

           

– ~10 Mcells/s on CPU

 ~ 40-50x speedup compared to CPU based implementation
– Comparable to ~48 Franklin cores

• Double precision hit only due to memory bandwidth
– Think about your units!

• Multi-GPU via message passing among GPU accelerated nodes
– Eg. 2.6x speedup on a 3 GPU ‘cluster’ (PSC)

• Now part of VORPAL (ongoing)



Benefit of GPUs not limited to FDTD:
Boundary Element Methods

– Large systems of linear equations
• O(100k)-O(1M) unknowns or larger

- Large matrices
- 100k unknowns:  80 GB
- 1M unknowns:  8 TB

- Direct or iterative method- Direct or iterative method
- LU for dense systems, reuse for different RHS
- Iterative possibly faster for single solution

- Too large to fit into memory of
small cluster

- Solution time scales with O(N3)
- Interesting problems take days to weeks

 need fast parallel out-of-core solvers
 Use GPUs as low-cost accelerators
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GPU vs CPU Speedup
for 8 way parallel OOC LU 

GPUs can significantly accelerate out-of-
core LU decompositions

• Based on 
Azevedo/Dongarra OOC 
solver
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Summary/Conclusions

• GPUs offer large potential for accelerating scientific applications

• GPULib enables GPU development from within VHLLs

• FDTD solver benefits well from GPU

• Parallel GPU accelerated OOC solver for MOM codes

• GPUs yields ~10x-40x speedup compared to CPU

• Fermi a big leap forward, both in performance and usability


