

Appropriate Quality Control for Diverse and Evolving Test Systems

Rhonda Whalen, M.S. Chief, Laboratory Practice Standards Branch Division of Public Health Partnerships Laboratory Systems

> CLIAC Meeting September 8, 2005

Background

CLIA Law

"The Secretary shall issue standards to assure consistent performance by laboratories... Such standards shall require each laboratory... to maintain a quality assurance and quality control program adequate and appropriate for the validity and reliability of the laboratory examinations and other procedures of the laboratory ..."

1992 CLIA Regulations

- Based standards on test complexity
- Regardless of test complexity, specified laboratory director responsibility for quality testing, quality control (QC) procedures
- Through phase-in QC provisions, allowed previously unregulated laboratories time to become familiar with requirements
- Required laboratories to follow manufacturer's instructions for test performance
- Defined minimum QC requirements
- QC requirements divided into
 - ✤ General
 - Specialty/subspecialty

2003 CLIA Regulations

- Responded to public comments, CLIAC recommendations
- Ended phase-in QC requirements
- Re-formatted requirements to parallel specimen flow through laboratory
- Incorporated quality system concept throughout testing process (new subpart-Quality System)

2003 CLIA Regulations

- Created one set of non-waived requirements
 - ✤ General
 - Specialty/subspecialty
- In determining control procedures, clarified that director needs to consider environment (including patient population), test system, and personnel
- Continue to require laboratory to follow
 manufacturer's instructions for test performance

Current Status -Regulations and

Guidance

Regulation	Guidance
 Establishes minimum requirements 	 Provides examples of mechanisms to meet requirements
 One (or limited) size to fit all testing 	 Clarifies applicability of requirements
 General requirements with broad application 	 Specifies exceptions/alternatives to requirements
Little flexibility	 Addresses new technology
 Requires rulemaking for revisions 	Requires agency clearance

Quality System Regulations – Analytic Phase

- Verification of performance specifications
- Calibration
- Calibration verification
- Control testing

Verification of Performance Specifications – Regulation

- Before reporting patient results, <u>laboratory</u> must verify test performance specifications for the following:
 - ✤ Accuracy
 - Precision
 - Test reportable range
 - Patient reference intervals (normal values)
- Based on verification of performance specifications, <u>laboratory</u> determines calibration and control procedures

Verification of Performance Specifications – Guidance Needed

- To assure flexibility, there is no specific guidance as to:
 - Number of assays to perform
 - How many materials to use
 - Time period for evaluations
 - ✤ Acceptability criteria
- May need to clarify minimum acceptable procedures for <u>laboratory</u> verification of performance specifications
- Could manufacturers recommend procedures for laboratory to follow?

Calibration – Regulation

Perform calibration

- Following manufacturer's instructions
 - Using calibration materials provided or specified
 At the frequency recommended by the manufacturer
- Using criteria determined by the <u>laboratory</u> through verification of performance specifications
- If possible, calibration material should be traceable to a reference method or reference material of known value

Calibration – Generally Manufacturer Defined

- Initial calibration may be factory performed
- Manufacturer may define laboratory calibration/re-calibration frequency in labeling
- Number, type, concentration, acceptable limits of calibration materials, and frequency should be included in labeling

Calibration Verification – Regulation

- Must include at minimum three calibrators: a zero, a midpoint, and a maximum value near the upper end of the laboratory's reportable range.
- Must be performed, at a minimum, every 6 months <u>or</u> whenever
 - A change of reagents occurs
 - Major maintenance or critical test system component changes occur
 - Laboratory detects trends or shifts in test values
 - Laboratory determines more frequent verification is needed

Calibration Verification – Guidance Needed

- Should there be exceptions to 3 point calibration verification?
- Should calibration verification be required following major maintenance (e.g., electrode change, etc.)?
- Could the same material be used to calibrate and verify calibration (not currently acceptable)?

Control Procedures – Regulation

- Based on verification of test performance specifications, <u>laboratory</u> must establish the number, type, and frequency of testing control materials
- <u>Laboratory</u> is responsible for having control procedures that monitor accuracy and precision of the complete analytic process

Control Procedures – Regulation

- Control procedures must
 - Detect immediate errors due to
 - o Test system failure
 - o Adverse environmental conditions
 - o Operator performance
 - Monitor over time accuracy/precision of test performance influenced by changes in
 - o Test system performance
 - o Environmental conditions
 - o Operator variance

Control Testing – Regulation

- Test two controls of different concentrations
- Test control material in same manner as patient samples
- Same material may not be used to meet calibration and control requirements

Control Procedures – Guidance Needed

- Current guidelines specify alternative/equivalent quality control (EQC) procedures to accommodate stable test systems, test systems with built in QC
- Need additional guidance for alternative control procedures
- Consider exception for testing control(s) in same manner as patient samples (e.g., blood gases)

Dilemma

ALL TEST SYSTEMS, LABORATORIES (TESTING CONDITIONS) ARE NOT THE SAME

QC Regulations – General

- Typically applicable to all test systems with little flexibility to address new, evolving technologies
- Cannot specifically address individual test systems/methodologies
- Not always practical/appropriate
- QC materials sometimes not available
- Inconsistent application to similar test systems in different specialties

QC Regulations – Specialty/subspecialty

- Laboratory specialties/subspecialties no longer distinct/clear-cut
- A single instrument may include tests for
 - Coagulation/Chemistry
 - Blood gases/Chemistry/Microbiology
 - Molecular testing/Chemistry/Microbiology
 - Cytology/Chemistry

Problematic Test Systems

- Unitized test systems
- Test systems that incorporate multiple components or reactions
 - Immunohematology antibody screening panels
 - Allergen-specific IgE tests
 - Genetic testing micro-arrays
 - Microbiology identification systems

Manufacturers' Instructions

- CLIA requires laboratories to follow manufacturers' instructions
- Manufacturers' instructions need to identify components monitored/checked by built in QC
- Instructions for some test systems
 Provide insufficient information
 - Are ambiguous
- QC information is
 - Not explicit or conflicting
 - Located throughout product literature

Need For Uniform Process

- Currently, exceptions for checking methodology/reagents are based on data collection/evaluation strategies
- Data collection may not be feasible for rapidly expanding new technologies
- Uniform approach/process needed to
 - Determine applicability of QC requirements
 - Assist laboratories in reasonably/appropriately complying with CLIA requirements

Considerations

Control Procedures

- Overall QC scheme would need to consider
 - Built-in or inherent or inherent QC checks (electronic QC, procedural QC) included in test system
 - Other checks/balances in the testing process
 - Test is part of a testing algorithm
 - Testing environment
 - Knowledge and skills of testing personnel

QC Materials/Mechanisms

- What test components must be monitored by QC?
- To what extent can QC be manufactured into the test/device?
- If test systems incorporate multiple components or reactions in a single device format, is QC for each component necessary?
- What type of controls are appropriate to verify accuracy and precision?
 - Electronic/built-in checks/procedural
 - ✤ Liquid
 - Other

QC Frequency

- How much QC is necessary to assure patient safety?
- At what frequency should these controls be tested?
- If other processes are employed
 Would traditional controls need to be tested?
 At what frequency?

Alternatives

- Would focusing only on vulnerable areas of testing (using risk analysis) be sufficient in determining appropriate QC?
- Could a network of laboratories using specific test systems collect data needed for the evaluation of QC alternatives?

Evidence-based Data

- On what basis should laboratories make decisions about their QC program?
- Would studies need to be conducted to collect performance data?
 - Manufacturer's responsibility help provide initial data
 - Laboratory's responsibility long term data collection
- Could a data template be developed?
 - Would need to describe all testing variables
 - o Test system sources of error
 - o Operator's skills and training
 - o Environmental conditions
 - o Patient population

Responsibility for Data Evaluation

- Who would complete the template?
- Who would review and evaluate the template data?
- Could these responsibilities be shared by
 - Industry
 - Laboratory/professional organizations
 - Government
 - Partnership (industry/laboratory community/government)?

Last Thoughts

QC Protocols

- Need to balance flexibility while adhering to accepted standards of quality practice
- Traditional QC and alternative QC schemes need to coexist
 - CLIA applies to all laboratory testing sites
 - CLIA needs to accommodate existing and diverse technologies, as well as evolving methodologies
 - New rulemaking unlikely

