
THE LHC CENTRAL TIMING HARDWARE IMPLEMENTATION
P. ALVAREZ, J. LEWIS, J. SERRANO

CERN, Geneva, Switzerland

Abstract

The LHC central timing requirements are very different from those of the injector chain, not only is machine safety and reliability critical, there are

other important differences that have forced a new approach. Unlike the injector chain, the LHC processes can not be usefully broken up into basic

time periods and cycles, rather they are independent, asynchronous, and of arbitrary duration. This paper presents the MTT, the new multitasking

event generation hardware we developed to control the LHC machine processes.

MTT ARCHITECTURE

The MTT has been developed having in mind the new LHC se-

quencing requirements. In LHC, processes are independent from

each other and do not adapt to a periodic structure as in the injector

chain [1]. The MTT, implemented in the same hardware as the pre-

vious Timing Master (CTG), contains a CPU that runs up to 16

tasks in a round robin scheme. Tasks can be executed, loaded and

stopped independently from each other in a deterministic way. Tim-

ing events are sent by writing to a special register of the Tasks Reg-

ister map.The MTT CPU was inspired by the TMS9900, which

maps all of its registers to external memory. A single workspace

register (WP) points to a set of 16 registers. This provides a simple

mechanism for context switching, where the store of 16 registers

becomes equivalent to storing and updating the WP. In the MTT all

the local registers and memory are mapped to internal RAM. A scheduler updates the WP every instruction cycle in a

round robin scheme, resulting in a continuous and deterministic parallel execution of every task.

CPU BLOCK DIAGRAM

Scheduler. Every time a task is enabled or

stopped the scheduler builds an execution table.

Tasks are executed from lowest task number to

highest. The scheduler provides the executed

task number and the task enable bit, which are

pipelined to the rest of CPU blocks.

Program Memory. The MTT can store 4K in-

structions in internal memory. The program

memory address read by a task is calculated by

adding to the task's PC a second register called

PC offset. Thus a task can be reallocated dy-

namically in memory without need to stop it.

Status Block. It keeps flags such as Illegal op-

code, illegal register, illegal value, running, wait-

ing or halted. It also stores the milestone for the

Wait Relative. The status block is read at the

same moment as the Program Memory and up-

dated by the Execution Unit.

Operand Fetch Unit. The Operand Fetch unit de-

codes the operation code and fetches the corre-

sponding registers.

Execution Unit. The Execution Unit calculates the result data, the new PC and status register.

Register Block. The register block stores local, global and special registers. The access is transparent to the Operand

Fetch Unit.

INSTRUCTION FLOW

The execution stages of the

MTT CPU are the following:

PC Fetch (PCF), Operand

Fetch 1 and 2 (OPF1, OPF2),

Execute (EX) and Store (ST).

If a branch instruction is exe-

cuted, the PC should be read

in PCF before it has been stored in ST; otherwise the task will jump to an incorrect location. This is avoided by in-

serting void tasks if necessary.

TASKS REGISTER MAP

The MTT task register Map consist of 256 locations:

32 Task registers. Task register #0 is used as an index in relative move instructions.

218 Global registers visible by every task.

6 IO registers:

MSFR: Millisecond free running counter, Read only. Used to wait for a relative number of milliseconds.

MSMR: Millisecond modulo Read/Write. Sent as payload in the millisecond frame.

SYNC: Sync free running counter Read only. Used to wait for a relative number of sync periods.

TSYNC Time from sync, Read/Write. Milliseconds since last sync arrived.

EVOUT: Timing frame out Read/Write. It writes into the frame serializer FIFO and reads the frame being sent on the cable.

VMEP2: External events read only, clear on read.

INSTRUCTION SET

A significant effort has been put in designing a generic instruction set. All logical, arithmetical and wait instructions can use Sour-

ce1 as a literal or a register address. Sending an event on the timing cable is equivalent to writing to the EVOUT register. Thus

adding a new IO device, such as an additional serializer, just requires a connection to the Memory Map.

In Wait Equal the task waits until the two sources are equal; in Wait Or it waits until (Source1 and Source2) ≠ 0; finally Wait Rela-

tive is used to wait on a free running counter. It adds Source1 to Source2 and stores it into a reference register (milestone). The wait

state ends when Source2 = milestone. This scheme allows the 16 tasks to have independent programmable delays using a single

counter and internal RAM.

Event Table Processing

An event table is a list of entries, each of which contains the name of the event to be broadcasted over the LHC timing cable, the relative

time to wait before sending it, and its payload. These tables model LHC machine processes and are controlled from the LHC Software

Architecture LSA timing service. The event table is sent from LSA to the LHC central timing gateway as a byte stream. On arrival the

event table compiler builds an ASCII file suitable for input to the

MTT assembler that will become the event task. The compiler first

translates each entry in the table into wait and move instructions. The

resulting block of instructions is then included into an event table task

template to become a full event task suitable for assembly. The tem-

plate contains code that manages the task synchronisation and its run

count. The resulting task is assembled into position independent ob-

ject code. The task loader then places it in memory, initialises its con-

trol block and runs it. LSA must now specify a synchronisation event

and run count to start producing event frames from it.

The length of an event table can vary form only one event entry to

thousands, and event tables are loaded and unloaded under LSA con-

trol. The task loader must manage MTT program memory so that each

task has the memory it needs. The task PC offset register permits the

task loader to pack fragmented memory containing running tasks into

contiguous memory. This can be achieved by copying a task from one

address to another unused portion of memory and changing its offset

register so that it executes at the new location without being dis-

turbed.

CPU

PC

Table

Program

Memory

Operand Fetch R

e

g

I

s

t

e

r

s
T

a
s
k
 #

T
a

s
k
 #

O
p

 C
o

d
e

D
e

s
t A

d
d

PC

PC

Offset

+

Sched

uler

Task #

Source

Adds

Task #

Regs

Task #

NextPC

Dest Add

WrEn

Task #

Status

Dest Data

Enable

E
n

a
b

le
E

n
a

b
le

O
p

e
ra

n
d

s

Execution

Enable

Task #

S
ta

tu
s

Status

O
p

C
o

d
e

L
ite

ra
l

S
o

u
rc

e

A
d

d
s

D
e

s
t A

d
d

FPGA (Spartan2 600E)

CPU

V

M

E

I

n

t

e

r

f

a

c

e

UTC SERIALIZER

4
0

M
H

z

P
P

S

S
Y

N
C

Timing

Signal

V

M

E

 P

2

External

Events

VME BUS

PCF IF OF1 OF2 EX ST

PCF IF OF1 OF2 EX ST

PCF IF OF1 OF2 EX ST

PCF IF OF1 OF2 EX ST

Task A

Task B

Task C

Task A

INSTRUCTION FORMAT

The instruction format is triadic with a fixed length of 64 bits.

There are three possible formats: Register, Register to Register

and branch instructions.

OpCodeSource2

OpCode

Source1

Literal

Dest

Source2Dest Reserved

Reserved

15..823..1639..32 31..24 7..063..40

b)

a)

OpCode
Program

Memory Add
Reservedc)

15..823..1631..24 7..043..32

DEVICE UTILIZATION
The MTT has been fully developed in VHDL. It was fitted in

the same PCB used by the previous timing master, the CTG.

The target FPGA is a Spartan2E 600. The design makes exten-

sive use of internal RAM, either distributed RAM (i.e. task’s

status, task’s milestones) or block RAM (i.e. program memory,

task’s registers). The MTT maximum frequency is 50MHz and

runs at 40MHz.

Device Utilization Summary (xc2s600e-6fg456)

Logic Utilization Used

A v a i l -

able %

Number of Slice Flip Flops 2,268 13,824 16%

Number of 4 input LUTs 3,804 13,824 27%

Logic Distribution

 Number of occupied Slices 2,673 6,912 38%

 Number of Slices containing

only related logic 2,673 2,673 100%

 Number of Slices containing

unrelated logic 0 2,673 0%

Total Number of 4 input LUTs 4,294 13,824 31%

 Number used as logic 3,804

 Number used as a route-

thru 276

 Number used for Dual Port

RAMs 212

 Number used as Shift regis-

ters 2

Number of bonded IOBs 154 325 47%

Number of Block RAMs 72 72 100%

Number of GCLKs 2 4 50%

Number of GCLKIOBs 3 4 75%

Total equivalent gate count for

design

1,239,6

14

HALT Stop program AtNothing AtNothing AtNothing

NOOP No operation AtNothing AtNothing AtNothing

INT Interrupt[1..16] AtLiteral AtNothing AtNothing

WEQV Wait value equal AtLiteral AtRegister AtNothing

WRLV Wait value relative AtLiteral AtRegister AtNothing

WORV Wait value bit mask AtLiteral AtRegister AtNothing

WEQR Wait register equal AtRegister AtRegister AtNothing

WRLR Wait register relative AtRegister AtRegister AtNothing

WORR Wait register bit mask AtRegister AtRegister AtNothing

MOVV Load register AtLiteral AtNothing AtRegister

MOVR Move register AtRegister AtNothing AtRegister

MOVIR Move Index register AtNothing AtNothing AtRegister

MOVRI Move register Index AtRegister AtNothing AtNothing

ADDR Add register AtRegister AtRegister AtRegister

SUBR Subtract register AtRegister AtRegister AtRegister

LORR Or register AtRegister AtRegister AtRegister

ANDR And register AtRegister AtRegister AtRegister

XORR ExclusiveOr register AtRegister AtRegister AtRegister

LSR LeftShift register AtRegister AtRegister AtRegister

RSR RightShift register AtRegister AtRegister AtRegister

ADDV Add value AtLiteral AtRegister AtRegister

SUBV Subtract value AtLiteral AtRegister AtRegister

LORV Or value AtLiteral AtRegister AtRegister

ANDV And value AtLiteral AtRegister AtRegister

XORV ExclusiveOr value AtLiteral AtRegister AtRegister

LSV LeftShift value AtLiteral AtRegister AtRegister

RSV RightShift value AtLiteral AtRegister AtRegister

JMP Jump AtAddress AtNothing AtNothing

BEQ Branch Equal AtAddress AtNothing AtNothing

BNE Branch NotEqual AtAddress AtNothing AtNothing

BLT Branch LessThan AtAddress AtNothing AtNothing

BGT Branch GreaterThan AtAddress AtNothing AtNothing

BLE

Branch LessThan-
Equal AtAddress AtNothing AtNothing

BGE

Branch GreaterThan-
Equal AtAddress AtNothing AtNothing

BCR Branch Carry AtAddress AtNothing AtNothing

G a rba ge
Collect
Load ob-
ject
In i t i a l i ze
TCB
Run task

Assemble
task

Translate
and Merge

HX.Start-Ramp 1.01 0x5
HX.Start-Freq 0 0x05

waitr MSFR,1001
movv 0x14020005 EVOUT
movv 0x14030005 EVOUT

FESA API

LSA

Table
Compiler

Tran
slatio

Event Table
template

Table Task

Assembler

Ob-
Reflec-

tive

Task
Loader

MTT
Program
Memory

H o t

Da
ta

Proc
ess

Event
Table

LHC GENERAL MACHINE TIMING SYSTEM OVERVIEW

A Symmetricom Xli Time and frequency

system disciplined by a GPS input provides

two basic clocks, namely the Pulse Per Sec-

ond PPS and the 10MHz, all other clocks

are derived from these throughout the

CERN central timing. These clocks are fed

to synchronization modules in the LHC

master timing generator and its hot standby,

where the PPS is delayed by (1s–100us) to

effectively produce a PPS advanced by

100us. The synchronization module also

multiplies the 10MHz via a Phase Locked

Loop PLL to produce a 40.00MHz clock,

which is used by the MTT to Manchester

encode the event stream at 500Kbits per sec-

ond, to produce eight 32bit event frames per

millisecond. The MTT encodes and trans-

mits the UTC time at the advanced PPS tick. The 100us offset together with the transmission delay will be compen-

sated for at the CTR timing receivers [5] to realign the output PPS tick with UTC. The CTR timing receivers recover

the encoding 40MHz and use this recovered clock to ensure the local PPS is within 25ns of the original Xli PPS.

GPS

C

T

S

Y

N

C

10MHz

1PPS MTT.

Multitask

Timing

Generator

CTR, Control

Triming ReceiverCTR, Control

Triming ReceiverCTR, Control

Triming ReceiverCTR, Control

Triming Receiver

Control Outputs

External Starts,

Clocks, Time

Stamp requests

Tim
in

g

Sig
na

l

40MHz

1PPS

External Conditions

NTP Time

THE TIMING SIGNAL

The Timing Generator builds and broadcasts a 1MHz Man-

chester encoded timing signal containing UTC frames, millisec-

ond frames and CPU send requests. Frames always contain 4

bytes of data sent in 125us slots. Millisecond frames are always

sent periodically, whereas UTC frames are low priority and can

be discarded. CPU send requests are stored in a 256 frames

FIFO. Alarms are raised if the CPU send request is not treated

in the corresponding millisecond, which can be allowed in nor-

mal operation, or if the FIFO is full.

Each 32-bit timing frame is broken up into two 16-bit parts; a

header and a payload. The header identifies the kind of frame it

is, for example a UTC time frame, a telegram frame, or a ma-

chine event frame. For some header types, the header contains a

code; in particular machine and telegram events contain an 8-bit

code. For telegram frames the code denotes which telegram parameter the

frame represents, while event codes denote which event it is, for example

start-ramp or post-mortem.

The payload carries specific information that depends on the header. The

two UTC frames carry the 32-bit UTC time, and in the LHC, the machine

event payloads vary according to the event code. For example the LHC

beam intensity event carries the intensity per bunch encoded in units of

1010 protons; while the machine mode event carries the mode enumeration

in its payload.

A T CODE PAYLOADA T CODE PAYLOAD

MillisecondMillisecond

7 Other frames

VME ACCESS

VME access is D32A24. Registers implemented in internal RAM, such as Program Memory, TCB table, local, global registers and

task’s status can be read or written at any time by the VME interface. This is achieved by time multiplexing the access of the MTT

CPU and the VME interface to the corresponding Block RAM.

MTT EXTERNAL EVENT TASK

External events such us beam-dump

requests, injection requests and post

mortem analysis are fed into the MTT

via the VME P2 User IO register. The

register VMEP2 stores any External

Event transition. A task waits on this

register and clears it at the same time

it copies it into a work register

(RegVmeP2). The task verifies the ac-

tive bits and broadcasts the necessary

Event Frames by writing to the Event

Out register (EVOUT).

THE MTT IN PRACTICE

strp: % Start program and interrupt survey task

movv TskStsRUNNING LRegTASK_STATUS % Say we are running

movv ConsNOT_SET LRegParRUN_COUNT % Run forever

int 2 % Notify survey we are running

cont: % Wait for the VME P2 bits and send out events accordingly

worv ConsVMEP2_BITS VMEP2 % Wait for VME P2 bits

movr VMEP2 RegVmeP2 % Copy reg and clear bits

tdmp1: % Test for dump ring 1

andv ConsHX_DMPD1_BIT RegVmeP2 LRegTEMP % Test dump 1 bit

beq tdmp2 % Go check for dump 2 bit

movv ConsHX_DMPD1 EVOUT % Send dump 1

movv ConsHX_ENBPM1 EVOUT % Re-enable after a dump

tdmp2: % Test for dump ring 2

andv ConsHX_DMPD2_BIT RegVmeP2 LRegTEMP % Test dump 2 bit

beq tinj % Go injection warning bit

movv ConsHX_DMPD2 EVOUT % Send dump 2

movv ConsHX_ENBPM2 EVOUT % Re-enable after a dump

tinj: % Test for LHC injection

andv ConsHIX_FW_BIT RegVmeP2 LRegTEMP % Test inject bit

beq tpm1 % Go check for PM ring 1

movv ConsHIX_FW EVOUT % Send injection forewarning

tpm1: % Test for post mortem bit 1

andv ConsHX_PM1_BIT RegVmeP2 LRegTEMP % Test PM ring 1 bit

beq tpm2 % Go check for PM ring 2

movv ConsHX_PM1 EVOUT % Send PM-1 trigger

tpm2: % Test for post mortem bit 2

andv ConsHX_PM2_BIT RegVmeP2 LRegTEMP % Test PM ring 2 bit

beq cont % Go check for PM ring 2

movv ConsHX_PM1 EVOUT % Send PM-1 trigger (not PM-2)

jmp cont % Go wait for next P2 interrupt

