Mechanism of vector meson production at low \boldsymbol{W}

C. Weiss (JLab), INT Workshop "Orbital angular momentum," Seattle, 14–Feb–12

Phenomenological approach based on parton picture

Contains asymptotic pQCD mechanism but more general:

finite-size/higher-twist effects non-perturbative interactions

Suggests experimental tests of reaction mechanism

• Small-size configurations

Example: Pion form factor

Model-independent analysis

Dynamical origin: pQCD interactions, QCD vacuum structure

• Vector meson production at high W ($\gtrsim 5 \, \text{GeV}$)

Tests of approach to small–size regime: $t\text{-slopes},~Q^2, W\text{-dependence},~\phi/\rho^0$ ratio $_{\rm HERA,~HERMES,~COMPASS,~EIC}$

 $\bullet\,$ Vector meson production at low W

Existing data: Kinematic dependences, comparison of channels Cornell, JLab 6 GeV Speculation: $q\bar{q}$ pair knockout in ρ^0 Experimental tests JLab 12 GeV

Small-size configurations: Elastic form factors

• Parton picture $P \rightarrow \infty, \ \boldsymbol{q}_T$ transverse

Current cannot produce pairs

Wave function overlap representation $F(q^2) = \sum_{n} \int dx \ d^2k_T \ \psi_n^*(x, k_{T1}, ..) \psi_n(x, k_{T2}, ..)$

Configurations with different particle number and transverse size

Expect that large $|{\bm q}_T|$ "select" small sizes How to quantify it?

• Transverse density Soper 76, Miller 07 $F(q^2) = \int d^2b \ e^{i {m q}_T {m b}} \
ho(b)$ 2D Fourier

 $f(q) = \int u \, v \, c \, \rho(v) \, 2b \, r \, v \, dv$

Cumulative charge/current of constituents at transverse position \boldsymbol{b}

Empirical charge density in pion
 Dispersion integral over timelike FF e⁺e⁻ data
 High density at b → 0: Small-size configurations?

Small-size configurations: Pion

• Two sources of small–*b* density

$x \sim 1/2$	size $\ll R$	small-size	mostly $qar{q}$
$x \to 1$	size $\sim R$	end-point	multiparticle, soft gluons

Dynamical question!

• Density in center of pion mostly from small-size configurations

End-point contribution constrained by quark density in pion at $x \rightarrow 1$ Miller, Strikman, CW 10. πA Drell-Yan data. Soft-gluon resummation \rightarrow Talk Vogelsang

• Alt. picture: Rest frame

Photon reverses quark in pair with momenta back-to-back along reaction axis

Model-independent statement on small-size configurations!

Small-size configurations: Dynamical origin

• Perturbative interactions

High-momentum component of wave function $k_T \sim R^{-1}$ wave function as source, $\int d^2 k_T$

Responsible for leading $Q^2 \rightarrow \infty$ asymptotics of pion FF Efremov, Radyushkin 77+; Brodsky Lepage 80

• QCD vacuum structure

Strong non–perturbative gluon fields of size $\rho \sim 0.2\text{--}0.3~\mathrm{fm}$

Objective measure: Average quark virtuality $\langle \bar{\psi} \nabla^2 \psi \rangle / \langle \bar{\psi} \psi \rangle > (0.7 \text{ GeV})^2$ Lattice: Teper 87, Doi 02, Chiu 03

Non-perturbative semi-hard component of WF Cf. short-range correlations in nuclei

Chiral anomaly? $\gamma^*\gamma \to \pi^0$ puzzle

Evidence for non-perturbative small–size configurations!

Exclusive meson production: High Q^2

Pseudoscalars π, η : Quark helicity/transversity structure \rightarrow Talks Kroll, Liuti

• Meson produced in small-size configuration

 $Q^2 \to \infty$: $q\bar{q}$ pointlike, pQCD interactions QCD factorization for σ_L : Collins, Frankfurt, Strikman 96

 $Q^2 \sim \text{few GeV}^2$: $q\bar{q}$ has small size, but non-perturbative interactions possible Recent progress: Sudakov suppression. Goloskokov, Kroll 08/10

Nucleon structure in GPDs: Quark/gluon form factors, universal, process-independent \leftrightarrow DVCS, other processes, lattice QCD

• Meson selects flavor/spin component

 $egin{array}{lll} \phi, J/\psi & {
m gluons} \
ho^+ & {
m quarks} & u-d \
ho^0, \omega & {
m quarks} & 2u\pm d \ + \ {
m gluons} \end{array}$

• Two-stage analysis

Verify approach to small–size regime: Kinematic dependences, comparison of channels Quantitative questions: Effective sizes? Dominant amplitudes?

Extract nucleon structure information: Transverse parton distributions, $q\bar{q}$ correlations, . . .

High W: Approach to small–size regime I

 $\bullet\,$ Simplifications at high W

Gluon exchange dominant in ρ^0 , similar to $\phi, J/\psi$

Coherence length $\gg 1~{\rm fm}:$ Dipole picture in nucleon rest frame

Im A \gg Re A: DGLAP region of GPD

Test approach to small-size regime!

• Universality of t-slopes at high Q^2

 Δ_T^2 slope measures transverse size of interaction region = size of target and meson configurations

Decreases at large Q^2 , becomes universal: Approach to small-size regime Contradicts Regge factorization!

Seen in HERA data!

High *W*: **Approach to small–size regime II**

H1

50

1

GK

W [GeV]

200

KMW:

INS-L

100

• Hardening of W-dependence with Q^2

 $W\mbox{-}{\rm dependence}$ becomes steeper with increasing Q^2

Rate of growth reveals effective scale in gluon GPD $Q_{\rm eff}^2\approx\pi^2/\langle r_{\rm q\bar{q}}^2\rangle\ll Q^2$

Contradicts Regge factorization "Effective" trajectory

High *W*: **Approach to small–size regime III**

• Ratio ϕ/ρ^0 constant at high Q^2

Same spatial size of configurations, only difference in quark charges

Consistent with SU(3) value 2/9

Low W: Reaction mechanism

• Mechanism of hard exclusive vector meson production more complex at low ${\cal W}$

Quark exchange important in ho^0, ω ; cf. ho^+, K^*

 ${\rm Re}/{\rm Im}$ could be large: ERBL region of GPDs?

Large skewness ξ : GPDs not simply related to forward limit

Potentially quark helicity–flip amplitudes, SCHC violation

• Present GPD models challenged

 ϕ overall well described with gluon GPD Hints of non-uniform W dependence near threshold. Other exchange mechanism? s-channel hyperon resonances?

Missing strength in ρ^0 — origin?

• Need experimental information JLab 6 and 12 GeV

Approach to small-size regime?

Type of exchanges/GPDs? Essential to reduce complexity!

Low W: Quark vs. gluon exchange

• Comparison $\rho^+ \leftrightarrow \rho^0 \leftrightarrow \phi$

 ρ^0 comparable to ρ^+ : Quark exchange!

Ratios consistent with u-quark dominance $\rho^0:\omega:\rho^+\sim 1:1:2$

• Scattering from valence quark or knockout of $q\bar{q}$ pair?

GPDs contain both DGLAP and ERBL regions

 $\sigma \sim W^{-4}$ at $W < 4 \, {\rm GeV}$ Cf. spin–0 meson exchange in soft regime

Hard regime: Knockout of spin-0 $q\bar{q}$ pair? Guidal, Morrow: Modified D-term in GPD

Scattering from quark

Knockout of $q\overline{q}$ pair

Low $W{:}~q\bar{q}$ knockout in ρ

- Speculation: ρ^0 and ρ^+ at $W < 4\,{\rm GeV}$ dominated by $q\bar{q}$ knockout

Chiral symmetry breaking prodces correlated small–size spin–0 $q\bar{q}$ pairs in nucleon Light–cone formulation: Schweitzer, Strikman, CW; in progress

Measured ρ^+/ρ^0 ratio consistent with exchange of $q\bar{q}$ with pion quantum numbers Isospin symmetry and $\rho \to \gamma \pi$ decay widths

 ρ production may involve chirally odd GPDs and distribution amplitudes Cf. pseudoscalar production \rightarrow Talks Kroll, Liuti

Challenge to implement quantitative model

• Rest frame picture: Reversal of quark in pair aligned along reaction axis

Analogy with short-range NN correlations in nuclei

Allows for modeling of non-perturbative interactions

Low *W*: Approach to small–size regime

• Q^2 -dependence of t-slopes

 $t_{
m min}$ large, varies with Q^2

If actual t-dependence of amplitude is non-exponential, changing t_{\min} will change effective slope in $t-t_{\min}$

Need to separate kinematic decrease of slope from actual "squeezing" of $q\bar{q}$ configurations

• Extensive tests with JLab 12 GeV

L/T ratio from SCHC, $\phi\text{-dependent}$ response functions

Change of $W\text{-}{\rm dependence}$ with t: Higher |t| enhances scattering from valence quarks, suppresses $q\bar{q}$ knockout

Summary

• Small-size configurations key concept in phenomenology of hard exclusive processes

More primary than specific interaction models

Encompasses non-perturbative interactions, e.g. chiral symmetry-breaking forces in QCD vacuum

Substantial probability of SSC's in pion from model-independent analysis

Can be probed in other experiments: Nuclear transparency, $\pi + A \rightarrow 2\,{
m jets}$

- Mechanism of exclusive vector meson production well understood at high W Model-independent tests of approach to small-size regime
 Successful phenomenology based on gluon GPDs
- Challenge to understand reaction mechanism at low W
 φ mostly from gluons needs closer look near threshold
 ρ⁰, ρ⁺ possibly dominated by qq̄ knockout needs to be quantified
 Experimental data essential for deciding between possible scenarios