Exploring nucleon structure with longitudinal spin

C. Weiss (JLab), Spin Workshop at RHIC & AGS Users' Meeting, 20–Jun–11

Non-perturbative dynamics!

- Nucleon structure in QCD
 Non-perturbative vacuum
 Rest frame vs. parton picture
- Non-singlet sea Δū Δd̄, Δū + Δd̄ 2Δs̄
 Why non-singlets
 Role of chiral dynamics
 Exp. results: SIDIS, W[±] at RHIC
- Gluons and orbital angular momentum Status of ΔG Comments on OAM challenges
- Beyond densities: Correlations
 Twist–3, 4 from g₁, g₂

Nucleon structure in QCD

• QCD vacuum not empty

Strong gluon fields of size $\mu_{\rm vac}^{-1} \ll 1 \,{\rm fm}$ $\bar{q}q$ pair condensate, π as collective excitation

- Nucleon at rest
 - $t \to i \tau$ statistical mechanics ~ Lattice, analytic methods $\langle N|O|N\rangle$ from correlation functions

No concept of "particle content!"

• Nucleon fast–moving $P \gg \mu_{\rm vac}$

Closed system: Wave function description, components with different particle number Feynman, Gribov

Short-distance probe: "Snapshot"

Physical properties: Number densities f(x), transverse spatial distributions, orbital motion, correlations, . . .

Correspondence between rest frame and partonic picture is subtle! Not all fields project on physical particle states

Non-singlet sea: QCD evolution

• Non-singlets do not mix with gluon

 $\begin{array}{ll} \bar{u}+\bar{d}+\bar{s} & \text{singlet} \\ \bar{u}-\bar{d} & \text{non-singlet} \\ \bar{u}+\bar{d}-2\bar{s} & \text{non-singlet} \end{array}$

• Total numbers conserved in LO $\int_{0}^{1} dx \left[\bar{u} - \bar{d} \right] (x, Q^{2}) = \text{const} + O(\alpha_{s})$ $\Delta \bar{u} - \Delta \bar{d} \quad \text{etc.}$

Must be of non-perturbative origin!

• Practically scheme-independent in NLO Unambiguous matching QCD \leftrightarrow effective models

Non-singlets are "messengers" between short- and long-distance structure

Non-singlet sea: Unpolarized asymmetry

$$\begin{split} I_G &\equiv \int_0^1 dx \; \frac{F_2^p - F_2^n}{x} \\ &= \; \frac{1}{3} + \frac{2}{3} \int_0^1 dx \; \left[\bar{u} - \bar{d} \right] \quad \text{lo} \end{split}$$

= 0.235 ± 0.026 NMC, $Q^2=4\,{
m GeV}^2$

$$q + \bar{q} \rightarrow (q - \bar{q}) + 2\bar{q}$$

Very weak scale dependence at NLO $\frac{1}{3}[1 + 0.0355 \alpha_s/\pi + O(\alpha_s^2)]$

• x-dependence from pp/pD Drell-Yan CERN NA51 94, FNAL E866 98/01. Larger x with JPARC?

 $\bar{d}-\bar{u}$ extracted from measured \bar{d}/\bar{u} with help of PDF parametrization

• Semi-inclusive DIS data compatible with Drell-Yan HERMES 98/08

Non–singlet sea: Chiral dynamics

physical πN configuration $b \sim M_{\pi}^{-1}$

 $q\overline{q}$ pair in

wave function

• Pion cloud model Sullivan 72, Thomas 83

Qualitatively explains why $\bar{d} > \bar{u}$

Problems with quantitative description: π highly virtual, sits "inside" nucleon

 Consistent formulation based on transverse spatial structure of configs cf. GPDs. Strikman, CW, PRD80 (2009) 114029

> Large-b component model-independent, calculable from chiral Lagrangian (χ PT)

Distances $b > 0.5 \,\mathrm{fm}$ account only for < 30% of experimental $\bar{d} - \bar{u}$

Most of asymmetry due to $q\bar{q}$ pairs "deep inside" nucleon!

 $d-\bar{u}$ tests chiral vacuum structure at distances $\ll 1 \, \mathrm{fm}$

Non-singlet sea: Polarized asymmetry

• $\Delta \bar{u} - \Delta \bar{d} > 0$ from interference of 0^+ and $0^- q\bar{q}$ pairs in wave function Dressler et al. EPJ C14 (2000) 147. Cf. π - σ interference in meson cloud model: Fries et al. EPJ A17 (2003) 509

Supplied by chiral symmetry breaking in QCD vacuum!

• Dynamical realization: Chiral quark—soliton model of nucleon Diakonov et al. NPB480 (1996) 341; PRD56 (1997) 4069

Relativistic mean-field description based on large- N_c limit of QCD

Matches with soft–pion dynamics (χ PT) at large b

Describes well $\bar{d} - \bar{u}$, parameter-free

 $\Delta \bar{u} - \Delta \bar{d}$ from dynamical chiral symmetry breaking in QCD vacuum

Non-singlet sea: Polarized asymmetry from SIDIS

• Indications of $\Delta \bar{u} - \Delta \bar{d} > 0$ in NLO global analysis of DIS/SIDIS data

De Florian, Sassot,Stratmann Vogelsang 08 (incl. pp); Leader, Sidorov, Stamenov 10/11

DSSV describes also recent COMPASS data, still current Stratmann, DIS2011 Spin WG

HERMES 04 SIDIS results inconclusive

• Planned with JLab 12 GeV Hall A proposal: X. Jiang et al.

Need better understanding of production mechanism in limited phase space with $W \sim$ few GeV: Duality, higher-twist

• Excellent prospects with EIC

Simulations to be updated \rightarrow INT Write-up, Users' Meeting Wednesday

Non–singlet sea: Polarized asymmetry from W

• PV single-spin asymmetry

$$A_L^{W+} = \frac{\Delta u(x_1)\bar{d}(x_2) - \Delta \bar{d}(x_1)u(x_2)}{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)}$$

Sensitive to $\Delta \bar{u} - \Delta \bar{d}$, but also to ΔG see e.g. Dressler et al. EPJ C18 (2001) 719

First results reported by STAR, PHENIX $x_{1,2} = 0.16$ at $\sqrt{s} = 500 \text{ GeV}, y = 0$ PRL 106, 062002 (2011); PRL 106, 062001 (2011). Looking forward to more precise data!

• Unpolarized $\bar{d} - \bar{u}$ at expected from LHC

Measured W^+/W^- ratio + parametrization, typical $x_{1,2} \sim 10^{-2}$

Non-singlet sea: Strangeness

- Theoretical expectations for SU(3) non–singlet $\Delta \bar{u} + \Delta \bar{d} - 2\Delta \bar{s}$

$$\begin{split} & [\Delta \bar{u} + \Delta \bar{d} - 2\Delta \bar{s}](x) = \frac{3F-D}{F+D} \left[\Delta \bar{u} - \Delta \bar{d}\right](x) \\ & \text{with } SU(3) \text{ symmetry and large-} N_c \text{ limit} \\ & \text{Numerical value of ratio} \sim 0.43\text{--}0.6 \end{split}$$

• $\Delta s + \Delta \bar{s}$ from global fits

DIS fits "prefer" positive $\Delta \bar{s}$

SIDIS fits very sensitive to K fragmentation fns Leader et al 11: DIS and SIDIS reconciled with HKNS FF's

New HERMES results on π/K multiplicities S. Joost, DIS2011; will impact on SIDIS analysis

• Possible that $\Delta \overline{s}(x) \neq \Delta s(x)$

Meson cloud model with $K\Lambda$ not quantitative: $b \ll 1 {
m fm}$; $K\Lambda$ only small fraction of total $s + \bar{s}$ Brodsky, Ma 96. Critical discussion: Strikman, CW 09

Unpolarized CC neutrino DIS discriminates s and \bar{s} via $W^+ + s \to c \to D$ meson

Gluon polarization: Summary

• $\Delta G(x)$ from global fit DIS + SIDIS + ppDe Florian et al. 08. Summary by M. Stratmann DIS2011

Small in x-region constrained by data

RHIC pp data impact on χ^2 , esp. at x < 0.1

• $\Delta G(x)$ and nucleon structure needs more work!

Connection with non-perturbative vacuum fields still poorly understood Instanton vacuum: G(x) subleading in instanton packing fraction

Gluonic operators challenging for lattice: Disconnected diagrams, noise

• Spin decomposition: x integrals

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + ?$$

Gluon spin? Orbital angular momentum?

Orbital angular momentum: Concepts

- Formulations of angular momentum EM tensor $\langle N | \int d^3 r \, \boldsymbol{r} \times \boldsymbol{T} | N \rangle$ "fields" partonic $|N \rangle = \sum |q...\bar{q}...g; J_z \rangle$ "particles"
- Questions and challenges Recent summary: Leader 2011

Separate quark \leftrightarrow gluon angular momentum in interacting theory? Yes, but conventional Separate gluon spin and orbital momentum? No Complications: Gauge invariance, renormalization

• Different definitions Jaffe, Manohar 90; Ji 97; Chen et al. 08; Wakamatsu 10

Ji: Belinfante version of EM tensor; connection with GPDs

$$J_{q,g} = \int_0^1 dx \, x \, [H_{q,g} + E_{q,g}](x,\xi,t \to 0)$$

Integrand not "partonic" density of angular momentum Burkardt, BC 09 No correspondence: $J_{g,\mathrm{Ji}} \neq \Delta G + L_{g,\mathrm{Jaffe-Manohar}}$

No simple answers. Much more work needed!

Orbital angular momentum: Nucleon structure

• Large isovector component of OAM

Lattice results for J_q, Σ_q QCDSF, LHPC. Here $L_q \equiv J_q - \Sigma/2$

Hints at chiral dynamics: πN configs in nucleon light-cone WF have L = 1 \leftrightarrow large sea quark Sivers function at HERMES, COMPASS?

Models: Chiral quark-soliton model; quark model + pion cloud Wakamatsu 05+; Goeke et al. 07. Thomas, Myhrer 08

Model-independent understanding?

• Future directions

Ji SR with GPDs constrained by exclusive data? DVCS: E_q from neutron and transverse target, charge asymmetry JLab 6/12 GeV, HERMES DVMP: E_q from ρ with transverse target, E_g from ϕ ? Challenging! Difficult to quantify errors. Need 12 GeV data to test reaction models.

Comprehensive approach using exclusive, semi-inclusive and inclusive observables Light-front phenomenology; needs better conceptual understanding! Dedicated INT Workshop 6-17 Feb 2012

Beyond densities: Correlations

• Power corrections probe non-perturbative quark-gluon correlations in nucleon

• Large non-singlet twist-4 correlations Leader et al. 09/10; see also Blümlein, Böttcher 10.

Sits at moderate x; not related to resonances, duality

Average virtuality of sea quarks $k^2 \sim \rho^{-2} \gg R^{-2}$: Short-range correlations in partonic wave function Sidorov, CW PRD73 (2006) 074016; Schweitzer et al., in preparation

Quantitative predictions from instanton vacuum: Twist-3 \ll Twist-4 supported by data d_2 SLAC E155/E155X; JLab Hall A, C; f_2 CLAS

Footprint of non-pert. QCD vacuum in partonic structure

Other interesting topics

• Nucleon spin structure at $x \to 1$ JLab 12 GeV

Study properties of 3-quark component of nucleon WF Orbital angular momentum important!

• Quark-hadron duality in spin structure functions JLab 6/12 GeV Study transition from low to high Q^2

GDH sum rule for p/D, etc.

• Spin structure with electroweak probes JLab 12 GeV PVDIS, possibly EIC

Probe with different quantum numbers charge/flavor

Summary

• Learn to discuss non-perturbative nucleon structure in QCD in more model-independent terms!

Powerful concepts: Vacuum structure, chiral dynamics, large– N_c limit, . . . Match tremendous experimental effort!

• Polarized ep/pp data offer many fascinating insights into nucleon structure

Non–singlet sea	\rightarrow	chiral vacuum structure
Gluon polarization	\rightarrow	orbital angular momentum
Power corrections	\rightarrow	quark–gluon correlations

• Orbital angular momentum challenges the very basics of our understanding of partonic structure

 $\begin{array}{rcl} \mbox{Infinite-momentum frame} & \leftrightarrow & \mbox{Rest frame} \\ & \mbox{Particles} & \leftrightarrow & \mbox{Fields} \end{array}$