Partonic structure and exclusive processes

C. Weiss (JLab), TMD2010, ECT* Trento, 21–Jun–10

Dynamics!

• Nucleon structure in parton picture

Rest frame vs. partonic description Nucleon as many-body system Physical properties

• Nucleon structure from exclusive processes Reaction mechanism and GPDs

> Transverse spatial distributions: Diffusion, chiral dynamics

Longitudinal structure: Stopping of fast quark

 $qar{q}$ pairs in nucleon: QCD vacuum

• Beyond distributions: Correlations

Multiparton correlations

Exclusive diffraction $pp \rightarrow p + H + p$

Nucleon structure: Parton picture

• QCD vacuum not empty

Strong non-perturbative gluon fields, scale $\mu \gg 1 \ {\rm fm}^{-1}$

 $\bar{q}q$ pair condensate, π as collective excitation

• Slow-moving nucleon $P\sim \mu$

 $\langle N|O|N\rangle$ from Euclidean correlation functions \rightarrow lattice, analytic methods

No concept of "particle content!"

• Fast-moving nucleon $P \gg \mu$

Closed system: Wave function description Gribov, Feynman

Components with different numbers of particles

Deep-inelastic process: "Snapshot" with resolution 1/Q

pQCD radiation: Scale dependence

Nucleon structure: Landscape

• Nucleon many-body system

Different components of wave function, effective dynamics

"Face" changes with excitation energy and resolution scale!

• Physical properties

Parton densities: Spin, flavor

Transverse spatial distributions

Orbital motion: k_T dependence, angular momentum

Correlations: Transverse, longitudinal

 $+ Q^2$ dependence

Exclusive processes: Factorization, GPDs

• Mechanism for $Q^2 \gg$ hadronic scale

Reaction takes place over transverse distances $\sim 1/Q$ Experimentally testable, finite–size corrections

 $Q^2 \rightarrow \infty$: QCD factorization theorem Collins, Frankfurt, Strikman 96; Ji 96, Radyushkin 96; Collins, Freund 98

Target structure in GPDs: Universal, process-independent

• Properties of GPDs

 $\langle N' | \text{twist-}2 | N \rangle$ operator definition, renormalization

Unify concepts of PDF and elastic form factors

Moments form factors of twist-2 spin-n operators n = 2 QCD energy momentum tensor $\rightarrow J_{q,g}$

• Partonic interpretation

 x_1, x_2 same sign transition parton density different sign distribution amplitude of $q\bar{q}$ pair

GPDs: Transverse distributions

• Transverse spatial distribution

Fundamental twist–2 characteristics, cf. elastic FFs

- $\bullet\,$ Transverse size changes with x
 - x > 0.1 Valence quark binding
 - x < 0.1 Chiral dynamics: Yukawa tail $b \sim 1/M_{\pi}$ from soft pions in WF
 - $x \ll 0.01$ Diffusion in parton decay, suppressed at high Q^2
- Nucleon polarization

Longitudinal Different size q_+, q_-

Transverse Rotation distorts spatial distributions

GPDs: Transverse distribution of gluons

• Transverse distribution of gluons from exclusive J/ψ and ϕ

Reaction mechanism tested at HERA

• Nucleon's gluonic size

HERA: Size small $\langle b^2 \rangle_g < \langle b^2 \rangle_{charge}$, increases with slope $\alpha'_g \ll \alpha'_{soft}$

COMPASS: New data at $x > 10^{-2}$

Lower-energy data: Poor quality, suggest small gluonic size

• Interest beyond nucleon structure

Initial conditions for small-x evolution equations, $Q_{\rm sat}(x)$

MC generators for pp@LHC: Transverse geometry

SW, arXiv:0812.1053, $Q^2pprox 3\,{
m GeV}^2$

GPDs: Gluon imaging with **EIC**

- Gluon imaging with J/ψ Large-x region with lower CM energy
- Singlet quark imaging with DVCS Hints from HERA: $Area(q + \bar{q}) > Area(q)$

Dynamics: Pion cloud, constituent quarks, quark vs. gluon diffusion

• Experimental requirements

Fully differential measurements in x, Q^2, t to control reaction mechanism

Wide coverage in t for Fourier

Recoil detection for exclusivity, resolution

GPDs: Sea quark imaging with EIC

• Non–singlet sea with exclusive $\pi, K/\rho^+, K^*$

QCD vacuum fluctuations, πN or $K\Lambda$ components in WF?

Spin/flavor separation of non-perturbative sea

• More demanding than singlets

High luminosity for low rates

GPDs: Transverse charge densities

- Transverse charge/current densities Miller 07 Measurable in elastic eN scattering Constrain valence quark GPDs $q - \bar{q}$
- Chiral dynamics at $b\sim 1/M_\pi$ Strikman, CW 10

Equivalence between invariant ChPT and partonic picture of "pion cloud"

Non-chiral core of charge density dominant up to distances $b\sim 1.5\,{\rm fm}$

• Many interesting results

Empirical charge densities: Neutron positive at $b \sim 1 \, {\rm fm}$ Miller 07

 $N \to \Delta$ from empirical FF, lattice Carlson, VdH 08; Alexandrou et al. 09

Matter density from AdS/QCD Abidin, Carlson, 08

GPDs: Valence quarks with DVCS

- Interference BH–DVCS in $N(e,e'\gamma)N'$ gives access to DVCS at amplitude level

 $\begin{array}{ll} {\rm Im \ DVCS} & e\uparrow -e\downarrow \\ {\rm Re \ DVCS} & {\rm unpolarized,} & e^+-e^- \end{array}$

• Reaction mechanism

JLab Hall A 6 GeV cross section data indicate "normal" approach to scaling

More tests needed!

• Extensive program with JLab 12 GeV

Separate GPDs $H \leftrightarrow E$ etc. through polarization observables, neutron target

Large skewness $x_1 - x_2$ and t_{\min} , transverse images model-dependent

GPDs: Longitudinal structure

• GPD at $x_2 = 0$: Amplitude for stopping of parton with momentum fraction x_1

Accessible experimentally in Im A(excl)

• Small x, high Q^2 : Configurations generated by QCD evolution

Successful phenomenology at HERA $R = A(DVCS)/F_1$

• Valence region: Configurations generated non-perturbatively, but how?

Difficult to realize with soft interactions

Very sensitive to boundary perturbative – non-perturbative

Cf. discussion $\gamma^*\gamma \rightarrow \pi^0$ Radyushkin 09; Polyakov 09; Dorokhov 10

GPDs: Quark–antiquark pairs

$$\operatorname{Re} A(t) = \int dx_1 \frac{\operatorname{GPD}(x_1, 0; t)}{x_1} + D(t)$$

 $\operatorname{Im} A(t) = \operatorname{GPD}(x_1, 0; t)$ measurable!

• Partonic regions of GPD

Transition PDF Distribution amplitude of $q\bar{q}$ pair

Related by Lorentz invariance: Polynomiality of moments

• Dispersion relations for LT hard exclusive amplitudes

Frankfurt, Strikman, Freund 97; Teryaev 05; Anikin, T. 07; Müller etal. 07; Diehl, Ivanov 07 \rightarrow Goldstein, Liuti

Subtraction term: *D*-term PW 99

Emission/absorption of $q\bar{q}$ pair: QCD vacuum structure

Form factor of EM momentum tensor: Lattice, semiclassical models Polyakov 02; Schweitzer et al. $08 \rightarrow Hägler$

Dispersion analysis of JLab DVCS data Polyakov, Vanderhaeghen 08

GPDs: Quark–antiquark pairs

Important in meson production at lower energies?
 Missing strength in ρ⁰ amplitude Goloskokov, Kroll 08; Guidal, Morrow 08
 Comparison φ ↔ ρ⁰ ↔ ρ⁺ data from JLab CLAS Fradi etal. 09
 Substantial finite-size effects: On-going discussion

Correlations: Multiple hard processes

• Transverse correlations in partonic wave function

Cf. short–range NN correlations in nuclei JLab Hall A, CLAS

Vacuum fluctuations $ho \ll R_{
m had}$

• Observable through enhancement of multiple hard processes in pp

CDF 3 jet + gamma data consistent with $\rho \sim 0.3\,{\rm fm}$

High rates for multijets at LHC: New field of study!

• Implications for TMDs and SIDIS

Sea quark intrinsic $k_T \sim \rho^{-1} \gg$ valence quarks? Schweitzer, Strikman, CW; in progress

Higher-twist effects governed by scale ρ^{-2} Balla, Polyakov, CW 97; Sidorov, CW 05

Correlations: Exclusive diffraction

$$S^2\,=\,\int\!d^2b\;P_{\sf hard}(b)\;P_{\sf no\;inelastic}(b)$$

• Correlation of hard process and soft spectator interactions

Heavy system H produced in hard two-gluon exchange

Concurrent soft spectator interactions must not produce particles

• Survival probability S^2

Calculable from gluon GPD and pp elastic amplitude

Diffraction pattern in p_{T1}, p_{T2}

Dynamical suppression in saturation regime, important for Higgs at LHC

• Probe GPDs in pp scattering? CMS/TOTEM or LHC420 STAR pp2pp @ $\sqrt{s} = 500$ GeV

Summary

- Attempt to discuss non-perturbative dynamics directly in partonic picture
- GPDs quantify essential elements of the nucleon's partonic structure

Transverse spatial distributions Longitudinal structure Quark–antiquark pairs

• Much insight already from present exclusive data, looking forward to future measurements

COMPASS: DVCS, J/ψ JLab 12 GeV: Valence quark region EIC: Gluon and sea quark imaging LHC: Diffraction, multiparton correlations RHIC, J-PARC, GSI FAIR: Partonic structure in $pp/\bar{p}p/\gamma p$

• Correlations as next step after one-body densities

"Expandig view" of nucleon structure in QCD