Nuclear physics with a high–luminosity medium–energy ep/eA collider at JLab

C. Weiss, EIC@JLab Study Group, JLab User Group Workshop, 09-Jun-09

 $s_{ep} \sim 1000 \, {
m GeV}^2$ ${\cal L} \approx {
m few} imes 10^{34} \, {
m cm}^{-2} \, {
m s}^{-1}$ $E_e/E_p = 5/30 - 60 \,\mathrm{GeV}$ Polarization, nuclear beams

- Sea quark and gluon imaging of nucleon
- Nucleon spin: Quark/gluon orbital motion
- Nuclei in QCD: Gluons, new short-distance probes
- QCD vacuum in hadron structure and creation

"Next step" after 12 GeV... into qualitatively new domain!

Nucleon structure in QCD: Landscape

- Nucleon in QCD many-body system: Rich structure, different dynamics
- JLab 12 GeV: Valence quark spin/flavor/spatial distributions
- EIC@JLab: Gluons and sea quark spin/flavor/spatial distributions
 - \rightarrow multiparticle dynamics
 - \rightarrow role of gluons in structure
 - $\rightarrow\,$ non–pert. QCD vacuum, meson cloud
- High–energy collider (HERA): small–x gluons
 - \rightarrow perturbative QCD radiation
 - \rightarrow high parton densities, "saturation"

Quark/gluon imaging of nucleon

- How are quarks/gluons in nucleon distributed in transverse space?
 - \rightarrow Fundamental characteristics, cf. form factors
 - \rightarrow Dynamics: valence quarks, pion cloud, . . .
 - \rightarrow Visualization: 3D Images
 - $\rightarrow\,$ Lattice results
- JLab 12 GeV: GPDs in valence quark region from DVCS

Sea quarks? Gluons? Full spin/flavor separation?

EIC: Sea quark imaging with exclusive mesons

Exclusive π ,⁺ 5/50 GeV, 10^34, 100 days [T. Horn et al. 08]

- Meson production needs $Q^2 \sim 10 \,\mathrm{GeV}^2$ for GPD description to be fully effective [cf. HERA]
- Unprecedented access to individual spin/flavor components
 - \rightarrow Flavor separation $\bar{d} \leftrightarrow \bar{u}$
 - \rightarrow Polarization $\Delta q, \Delta \bar{q}$
 - \rightarrow Strangeness s, \bar{s}

Small cross sections, differential measurements require high luminosity

Exclusivity: energy resolution, recoil detection

EIC: Gluon imaging with exclusive J/ψ

Gluons essential part of structure

 not just at small x!
 30% of momentum at Q² ~ 0.5 GeV²
 Mass generation ↔ vacuum structure

"Next generation" of nucleon models

• Transverse gluon imaging through exclusive J/ψ

HERA: Small x, overall area only

 $x > 10^{-2}$: No precise information!

Better *t*-resolution with more symmetric collider!

Simulation for 10/250 GeV, $10^{33} {\rm cm}^{-2} s^{-1}$

Even better results with high–luminosity medium-energy EIC@JLab!

Adapted from A. Sandacz (2007)

• Example: Transverse quark/gluon imaging with DVCS

Sensitive quark and gluons in region $x < 10^{-1}\,$

Quark/gluon spin and orbital motion

Interference structure functions (Sivers)

• How does nucleon spin arise from QCD degrees of freedom?

 ΔG likely small at low scales, new focus on L_q, L_g . . . needs comprehensive approach!

• Quark/gluon orbital motion

Emerging theoretical framework: TMDs Interference structures in semi-inclusive DIS: Orbital angular momentum, QCD dynamics

- Flavor decomposition $\Delta q, \Delta \bar{q}$, transversity
- 12 GeV: Inclusive spin structure in valence region $\rightarrow \Delta q, \Delta G$ from global fits, large x, growing semi-inclusive/TMD program

Need higher Q^2 , W to realize full potential of semi-inclusive DIS!

EIC: Quark/gluon spin and orbital motion

- Unprecedented semi-inclusive DIS capabilities: x, Q^2, W' coverage, transverse polarization
 - \rightarrow Flavor separation $\Delta q \leftrightarrow \Delta ar{q}$
 - $\rightarrow L_q$ from interference structures: indirect access, expect progress
 - \rightarrow TMDs, quark orbital motion
 - \rightarrow Transversity distributions
- ΔG from inclusive spin structure (global fits), open charm
- Also possible: J_q from GPDs Model-dependent; await 12 GeV results

Nuclei in QCD

- How does nuclear binding influence quark/gluon structure?
 - \rightarrow Long–range forces in QCD, effective theories
 - $\rightarrow\,$ Short–range NN interaction, dense matter
- How do small-size quark/gluon configurations interact with hadronic matter?
 - \rightarrow Local color fields in nuclei
 - \rightarrow Coherence effects
- JLab 6/12 GeV: EMC effect of valence quarks, short-range correlations, transparency

Sea quarks, gluons? Coherence?

• Example: Uncertaintanties of present nuclear parton densities [Eskola et al. 2009, EPS09]

EIC: Quark/gluon structure of the nucleus

coherent

- Nuclear gluons and sea quarks from inclusive DIS: "EMC effect"
 Gluons: Q² dependence, longit. structure F_L Sea quarks: Isospin dependence, polarization large x, Q² coverage
- Neutron structure from spectator tagging in D(e, e'p)XSea quarks: isospin dependence forward p/n detection
- Fundamental quark/gluon radii from coherent nuclear processes A(e, e'M)A New class of "QCD form factors" luminosity, recoil detection – challenging!
- Color transparency in meson production Color fields in nuclei luminosity; x range → coherence length

QCD vacuum structure

- QCD vacuum: Ground state of complex many-body system!
 - $q\bar{q}$ pairs, strong gluon fields Lattice: progress in simulation/visualization
 - Spontaneous chiral symmetry breaking: Mass generation, collective excitations
 - Topological excitations:
 Global structure of gauge group
- Explore vacuum through hadron structure
 - Sea quarks, gluons in partonic wavefn
 - Quark/gluon correlations: "Higher twist"

EIC: Inclusive/semi-inclusive/exclusive DIS $[\rightarrow earlier]$

EIC: QCD vacuum and hadron creation

- How do hadrons emerge from QCD vacuum?
 - $\rightarrow \ \mbox{Mechanism}? \ \ \mbox{Mass scales}? \\ \ \ \mbox{Quantum numbers}?$
 - \rightarrow Energy–mass conversion
- Semi-inclusive DIS: Quark fragmentation functions Charge/flavor dependence: Much more than $e^+e^- \rightarrow$ hadrons! Energy, luminosity
- Particle correlations within/between jets
 Detailed study of mechanism.
 Target fragmentation: Flavor structure, quark–quark correlations.

Fully differential measurements, forward detection

Summary

• High-luminosity, intermediate-energy ep/eA collider provides unique combination of capabilities for nucleon/nuclear structure

 x, Q^2 coverage for sea quarks, gluons, QCD processes Luminosity: Rare processes, differential measurements Detectability: Energy resolution, particle ID, forward direction

• "Next generation" of nucleon structure experiments

Nucleon quark/gluon imaging Origin of nucleon spin QCD and nuclear binding QCD vacuum in hadron structure and creation

• Possible electroweak program. . . high luminosity!

A major opportunity for the nuclear physics community!