Exclusive processes with JLab 12 GeV and EIC

C. Weiss (JLab), Hard Exclusive Processes, Munich, 09-Nov-2009

Luminositylow-rate processesEnergy x, Q^2 coverageDetectionexclusivity, resolution

• Exclusive processes and nucleon structure

Physics: Transverse imaging, correlations Testing the reaction mechanism

- JLab 12 GeV: Valence region
 Deeply virtual Compton scattering Meson production
- EIC: Gluons, sea quarks, nuclei

Gluon imaging with J/ψ , ϕ Sea quarks with meson production N^* , diffraction, meson structure Nuclei: New probes of shadowing, CT

• Synergies $ep \leftrightarrow pp, \pi p, \gamma p$ Transverse geometry in pp@LHC

Nucleon structure: Landscape

• Nucleon in QCD many-body system

Partonic picture: Different components, effective dynamics

Correspondence with rest frame picture: Euclidean QCD, lattice, instantons

• Components probed in *ep* scattering JLab 12 GeV Valence region: 3*q*, 5*q*

EIC Sea quarks, gluons, Q^2 dependence

• Physical properties

Parton densities
Transverse spatial distributions
Orbital motion, angular momentum
Correlations: transverse, longitudinal
+ nuclear modifications

Nucleon structure: Exclusive processes

• Exclusive processes at $Q^2 \gg R_{had}^{-2}$: Reaction "pointlike" in transverse space, partonic mechanism

> QCD factorization theorem: GPDs universal, process–independent Müller etal. 94; Brodsky etal. 94; Collins etal. 96; Radyushkin 96, Ji 96

• Physical interest in GPDs

x' = x Transverse spatial distribution of of partons with longitudinal momentum x: Transverse imaging of nucleon Burkardt 00

 $x' \neq x$ Longitudinal form factor: Correlations in wave function

Moment x^{n-1} Form factor of local twist-2 spin-*n* operator: EM tensor, angular momentum Ji 96, Polyakov 02

• Test reaction mechanism

Model-independent features of small-size regime? Finite-size corrections?

JLab 12 GeV: Exclusive processes

CLAS12 kinematic coverage $N(e, e'\gamma)N$

Scattering from q or \overline{q}

Knockout of $q\bar{q}$ pair

Unique capabilities

High luminosity $10^{37} \text{cm}^{-2} \text{s}^{-1}$ (Hall A), 10^{35} (CLAS12) for valence region, differential measurements, spin asymmetries

Complementarity of CLAS12 detector and magnetic spectrometers in Hall A, C

• Characteristics of valence region

Longitudinal momentum transfer $\xi \approx x_B/2$ substantial; $t_{\rm min}$ large

Scattering from quark/antiquark and pair knockout both important ... GPD contains both!

Large polarization effects

Limited kinematic coverage: How to test reaction mechanism?

JLab 12 GeV: Deeply virtual Compton scattering

- Interference BH–DVCS in $N(e,e'\gamma)N'$ gives access to DVCS at amplitude level

$$\begin{array}{ll} {\rm Im}({\rm DVCS}) & \stackrel{\rm LT}{\sim} & H(x=\xi,\xi;t) \\ {\rm Re}({\rm DVCS}) & \sim & \int\!dx \, \frac{H(x,\xi;t)}{x-\xi} \end{array}$$

- Reaction mechanism: Hall A 6 GeV cross section measurements indicate "normal" approach to scaling
 - ... more tests needed!
- Separate GPDs $H \leftrightarrow E$ etc. through polarization observables, neutron target

JLab 12 GeV: New developments in DVCS

 Leading-twist analysis of DVCS: Well-developed formalism, GPD parametrizations → Talk M. Vanderhaeghen

• New development: Dispersion relations for hard exclusive amplitude

Teryaev 05; Anikin, T. 07; Müller etal. 07; Diehl, Ivanov 07

- \rightarrow Minimal model dependence!
- $\label{eq:accessible} \begin{array}{l} \rightarrow \mbox{ Accessible information } \mbox{Im} A \sim H(\xi,\xi;t) \\ + \mbox{ subtraction constant } \mbox{ D-term Polyakov, CW 99} \end{array}$
- Need dynamical models *specific* to valence region

Finite-size, kinematic corrections?

Correlations at large x?

"Simpler" than previously thought!

JLab 12 GeV: Projected DVCS results

x = 0.45

• GPD $H(x = \xi, t)$ extracted from simulated CLAS12 beam spin asymmetry

- Transverse "quark image" of nucleon in valence region (here $x = \xi$)
 - \rightarrow Dynamical models

JLab 12 GeV: Exclusive meson production

• Reaction mechanism at $W \sim {\rm few~GeV}$ still poorly understood

Role of $q \bar{q}$ pair knockout? Guidal, Morrow 08

Large finite-size corrections at $Q^2 \sim \text{few GeV}^2$ Progress with theoretical calculations \rightarrow Talk A. Levy. Kroll, Goloskokov 08/09

- Interesting: t-dependence of ϕ at 6 GeV compatible with J/ψ at higher energies Universality of gluon GPD!
- Cross section *ratios* less affected by finite meson size

Comparisons between channels, spin asymmetries many examples!

Need better understanding of reaction mechanism. . . expect progress!

EIC: Exclusive processes

• Unique capabilities

Wide kinematic coverage at high luminonsity: Meson production at $Q^2 > 10 \text{ GeV}^2$ J/ψ electro/photoproduction Tests of reaction mechanism $\rightarrow \text{Talk A. Levy}$

Forward detection of recoil nucleon/nucleus

• Exclusive processes at x < 0.1

Skewness ξ -dependence calculable Focus on transverse imaging!

Differences/similarities between channels

"Diffractive" \leftrightarrow $J/\psi, \phi, \rho^0, \gamma$ gluon/singlet quark large

"Non-diffractive" π, ρ^+, K, K^* non-singlet quark GPD small cross sections

DVCS no longer "special," look at whole set!

EIC: Gluon imaging with J/ψ

- Gluon imaging through exclusive J/ψ and $\phi~(Q^2>10\,{\rm GeV}^2)$

Clean channels!

Transverse distribution directly from $\Delta_T\text{-}\text{dependence}$

• Physical interest

Valence gluons – dynamical origin? Chiral dynamics at $b \sim 1/M_{\pi}$ Diffusion in QCD radiation

- Essential for future MC for pp@LHC, saturation $Q_s \sim gluons/transverse$ area
- Existing data

Transverse area x < 0.01 HERA Larger x poorly known FNAL 82, . . .

EIC: Valence gluons

- EIC: Precise gluon imaging through exclusive J/ψ and ϕ
 - x > 0.01: Map unkown region of non-perturbative gluons!
- Needed for imaging

Full *t*-distribution \rightarrow Fourier Non-exponential? Power-like at $|t| > 1 \text{ GeV}^2$?

Electroproduction with $Q^2 > 10 \,\mathrm{GeV^2}$: Test of reaction mechanism, different channels

• Machine requirements

Recoil detection for exclusivity, t-measurements Luminosity $\sim 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$ for x > 0.1, electroproduction, high-t

First gluonic images of nucleon at large x!

EIC: Gluon vs. singlet quark size

• Do singlet quarks and gluons have the same transverse distribution?

Hints from HERA: Area $(q + \bar{q}) >$ Area(g)

Dynamical models predict difference: Pion cloud, constituent quark picture

No difference assumed in present $pp\ {\rm MC}$ generators for LHC!

• EIC: Gluon size from J/ψ , singlet quark size from DVCS

x-dependence: Quark vs. gluon diffusion in wave function

Detailed analysis: LO \rightarrow NLO Müller et al.

Detailed differential images of nucleon's partonic structure

EIC: Quark imaging through meson production

• Transverse distribution of non-perturbative sea quarks Flavor structure $\bar{u} \leftrightarrow \bar{d} \leftrightarrow s, \bar{s}$

Longitudinal polarization $q_+ \leftrightarrow q_-$

- \rightarrow QCD vacuum structure
- \rightarrow Chiral dynamics, "pion cloud"
- Exclusive meson production $\gamma^*N \to M+B$

Requires $Q^2 > 10 \,\mathrm{GeV}^2$ for dominance of "pointlike" configurations \rightarrow pQCD

Meson quantum numbers select spin/flavor component of GPD

Information about meson wave function: Size, flavor structure

EIC: Sea quark imaging

- Do strange and non-strange sea quarks have the same spatial distribution?
 - $\rightarrow \pi N$ or $K\Lambda$ components in nucleon? \rightarrow QCD vacuum fluctuations?
- EIC: Exclusive π and K production

High luminosity for low rates, differential measurements in x, t, Q^2

Kinematic reach in Q^2, x

Recoil detection for exclusivity, t-distributions

EIC: Transverse polarization

 Deformation of transverse distributions by transverse polarization of nucleon

Helicity–flip GPD E, cf. Pauli FF

• EIC: Exclusive ρ and ϕ production with transversely polarized beam

Excellent statistics at $Q^2 > 10 \, {\rm GeV}^2$

Transverse polarization natural for collider

$$\frac{\sigma \uparrow -\sigma \downarrow}{\sigma \uparrow +\sigma \downarrow} \propto \frac{\mathrm{Im}(\mathcal{HE}^*)}{|\mathcal{H}|^2 + \mathrm{corr.}}$$

EIC: Why lower energies

• Example: Exclusive production $ep \rightarrow e' \pi^+ n$

Physics interest x > 0.01: Non-perturbative sea quarks

- Lower-energy, symmetric collider
 - \rightarrow Wider π^+ angular distribution: Detection, angular resolution
 - \rightarrow Wider recoil n distribution: t-resolution
- Detector simulations in progress

Exclusive processes at x > 0.01: Better prospects with lower-energy, more symmetric collider!

EIC: Exclusive processes with nuclei

with M. Strikman

 $l_{
m coh}, \, l_{
m form} \gg R_A$ Color transparency $\sigma \propto A$ incoherent

- Nucleus as "filter" for small-size configurations
- Unique way to explore longitudinal direction in high-energy scattering

EIC: Coherent scattering from nuclei

• A-dependence in color transparency regime

$$\frac{d\sigma}{dt}(t=0) \propto A^2$$
, $|t| \propto R_A^{-2} \propto A^{-2/3}$

• Polarized light nuclei

⁴He Spin 0 "single GPD"

- $^2{
 m H}$ Spin 1 $\Delta S=2$ component
- Nucleus as "detector" for quantum number transfer

Very different propabilities for leaving nucleus intact

EIC: Gluon imaging of nuclei

Goeke, Guzey, Siddikov 09

- Transverse distribution of gluons in nuclei from coherent J/ψ production

Fundamental characteristic: Quark–gluon origin of nucleon–nucleon forces

New approach to nuclear shadowing: Thickness \leftrightarrow impact parameter b

Theoretical predictions

• Experimental challenges Caldwell, Kowalski, arXiv:0909.1254

Detection at very low $t \sim (\text{few fm})^{-2}$

Beam optics: Intrinsic k_T

Veto nuclear breakup, excitations (theory)

Exclusive processes: Beyond transverse imaging

• N* resonance excitation through hard exclusive process

QCD factorization: Hard process as transition operator Frankfurt, Strikman, Polyakov

New quantum numbers!

- New probes of meson structure Meson size $\leftrightarrow Q^2$ dependence, flavor structure "Exotics" from QCD counting rules
- Diffractive dissociation in exclusive vector meson production

Quantum fluctuations of gluon density: Fundamental property of many–body system Frankfurt, Strikman, Treleani, CW

Interesting opportunities, should be explored further!

Exclusive processes: Small–x physics

• LO QCD factorization for hard exclusive processes at small xequivalent to dipole picture Brodsky, Frankfurt, Gunion, Müller, Strikman 94 Frankfurt, Radyushkin, Strikman 98

> Gluon GPD as color dipole of nucleon Space-time evolution, intuition Modeling of finite size effects

• Transverse gluon distribution essential ingredient in studies of unitarity limit/saturation at small x Frankfurt, Strikman + Rogers, Guzey, CW; Kowalski, Teaney

"Black-disk regime"

Affects also nuclear enhancement of saturation: "Oomph factor"

Synergies $ep \leftrightarrow pp$

- Transverse distribution of partons essential ingredient in theory of high-energy *pp* collisions with hard processes
- Centrality dependence
 - \rightarrow Spectator interactions, underlying event structure
 - → Hard process as trigger on central collisions Frankfurt, Strikman, CW 04
 - → Rapidity gap survival in central exclusive diffraction Frankfurt, Hyde, Strikman, CW 06
- Multiple hard processes

Geometric probability depends on transverse sizes!

Multiparton correlations? Frankfurt, Strikman, CW 04

High probability in pp@LHC, not included in present MC!

Summary

- JLab 12 GeV and EIC program provide strong and complementary capabilities for exclusive processes
- JLab 12 GeV: Need to explore/establish reaction mechanism! Expect progress from 6 GeV meson production data. Theory input essential, including dynamical models
- EIC: Great potential for gluon and sea quark imaging and nuclear physics studies. Needs more involvement . . . now is the time!

Supplementary material

JLab and 12 GeV Upgrade

CW beam $\sim 100 \,\mu A$ Present beam energy 6 GeV Operating since 1994

- "Race track" accelerator with linacs + arcs, extensible to 24 GeV
- Uses unique superconducting RF technology + energy recovery
- Experimental halls
 - A, C Magnetic spectrometers B Large acceptance CLAS
- 12 GeV Upgrade

Double beam energy 6 \rightarrow 12 GeV Add Hall D (γ beam, GlueX detector) Upgrade existing halls

DOE project (CD0 2004, CD3 2008) Construction started, beam exp. 2013 Total cost \sim 300M\$

High–luminosity medium–energy EIC at JLab

- Research & development on-going, presented to EIC Advisory Committee Feb-09 and Nov-09
- Possible upgrade to high–energy ELIC with 10/250 GeV, but *distinct* medium-energy physics program!

Energy

 $E_e/E_p = 5/30 - 11/60 \, \text{GeV}$ $s_{ep} = 600 - 2600 \,\mathrm{GeV}^2$ Luminosity few $\times 10^{34}$ cm⁻² s⁻¹

Circumf. $\sim 600 \text{ m}$

Polarization, nuclear beams

JLab 12 GeV: Cross section ratios

$$\frac{\sigma \uparrow -\sigma \downarrow}{\sigma \uparrow +\sigma \downarrow} \propto \frac{\operatorname{Im}(\mathcal{H}\mathcal{E}^*)}{|\mathcal{H}|^2 + \operatorname{corr.}}$$

- Transverse target spin asymmetry in $\gamma_L^* p \rightarrow \rho^0 p$ sensitive to helicity-flip GPD E
- Alt: Transverse recoil polarization in $\gamma_L^* p \rightarrow K^* \Lambda$

$$SU(3)$$
 symmetry: $\langle \Lambda | \dots | p \rangle \ \rightarrow \ \langle p | \dots | p \rangle$

- Pseudoscalars π, K probe polarized GPDs
 - \tilde{H} : Flavor structure $\Delta q, \Delta \bar{q}$
 - \tilde{E} : "Pole term" in π^+, K^+

EIC: Meson production

• $Q^2 \to \infty$: Meson produced in pointlike configuration t-slope independent of Q^2

Seen in HERA vector meson data!

• Q² ~ few GeV²: Substantial finite-size corrections (higher twist)

Dynamical models w. intrinsic k_T Frankfurt et al. 96; Vanderhaeghen et al. 98; Kroll, Goloskokov 05

GPDs in *pp*: Central exclusive diffraction

 $pp \rightarrow p + gap + H + gap + p$ (= dijet, Higgs, $Q\bar{Q}$, ...)

Frankfurt, Hyde-Wright, Strikman, Weiss 06

 Hard process modified by soft spectator interactions: Rapidity gap survival

soft pprox elastic $S_{\mathrm el}$

• Interference phenomenon:

 $S_{\rm el} = 1 + T_{\rm el} \leftarrow {\rm known!}$

• Diffraction pattern in p_{1T}, p_{2T} , observable with forward detectors: CMS/TOTEM at LHC LHC420 (x < 0.01) STAR pp2pp @ $\sqrt{s} = 500$ GeV ?