3D imaging of proton and nuclei with EIC Progress report on deep exclusive reaction program

C. Weiss (JLab), EIC Advisory Committee Meeting, JLab, 02–Nov-09

Dynamics!

• Gluon imaging

Physics of non-perturbative glue Exclusive J/ψ and ϕ production Importance for pp@LHC, small x Nuclear gluons

- Quark imaging
 Sea quarks: QCD vacuum, chiral dynamics Exclusive meson production, DVCS Polarization
- Meson/baryon structure Excited states $N \rightarrow N^*$, diffraction Longitudinal correlations $\xi \neq 0$ Orbital motion

Nucleon structure: Landscape

- Nucleon in QCD many-body system Different components, effective dynamics
- Components probed in ep scattering

JLab 12 GeV valence quarks

EIC

sea quarks, gluons, Q^2 dependence

• Physical properties

Parton densities

Transverse spatial distributions: GPDs *

Orbital motion: TMDs, angular momentum

Correlations: "Higher twist"

Nucleon structure: Transverse imaging

• Transverse imaging of nucleon through high– Q^2 exclusive processes N(e, e'M)N'

GPDs (x' = x): Form factors of partons with longitudinal momentum fraction x

Transverse spatial distribution of partons: Tomographic images of nucleon at fixed $x \, {\rm Burkardt}$

- \rightarrow Fundamental, process-independent
- \rightarrow Twist–2, calculable in lattice QCD
- JLab 12 GeV: Valence quark GPDs through $N(e, e'\gamma)N' + \text{spin observables}$

Transverse distributions of valence quarks

Longitudinal correlations $x' \neq x$

Much more interesting information: Gluons! Sea quarks! Spin/flavor

Gluon imaging: Probes and dynamics

- Gluon imaging through exclusive J/ψ and $\phi~(Q^2>10\,{\rm GeV^2})$

Clean channels! Transverse distribution directly from Δ_T -dependence

• Physical interest

Valence gluons – dynamical origin? Chiral dynamics at $b \sim 1/M_{\pi}$ Diffusion in QCD radiation

- Essential for future MC for pp@LHC, saturation $Q_s \sim gluons/transverse$ area
- Existing data

Transverse area x < 0.01 HERA Larger x poorly known FNAL 82, . . .

Gluon imaging: Valence gluons

- EIC: Precise gluon imaging through exclusive J/ψ and ϕ
 - x > 0.01: Map unkown region of non-perturbative gluons!
- Needed for imaging

Full *t*-distribution \rightarrow Fourier Non-exponential? Power-like at $|t| > 1 \text{ GeV}^2$?

Electroproduction with $Q^2 > 10 \,\text{GeV}^2$: Test of reaction mechanism, different channels

• Machine requirements

Recoil detection for exclusivity, t-measurements Luminosity $\sim 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$ for x>0.1, electroproduction, high-t

First gluonic images of nucleon at large x!

Gluon imaging: Gluon vs. quark size

• Do singlet quarks and gluons have the same transverse distribution?

Hints from HERA: Area $(q + \bar{q}) >$ Area(g)

Dynamical models predict difference: Pion cloud, constituent quark picture

No difference assumed in present $pp\ {\rm MC}$ generators for LHC!

• EIC: Gluon size from J/ψ , singlet quark size from DVCS

x-dependence: Quark vs. gluon diffusion in wave function

Detailed analysis: LO \rightarrow NLO Müller et al.

Detailed differential images of nucleon's partonic structure

Gluon imaging: Nuclei

- Transverse distribution of gluons in nuclei from coherent J/ψ production

Fundamental characteristic: Quark–gluon origin of nucleon–nucleon forces

New approach to nuclear shadowing: Thickness \leftrightarrow impact parameter b

Theoretical predictions Goeke, Guzey, Siddikov 09

• Experimental challenges

Detection at very low $t \sim (\text{few fm})^{-2}$

Beam optics: Intrinsic k_T

Veto nuclear breakup, excitations (theory)

Quark imaging: Exclusive meson production

• Transverse distribution of non-perturbative sea quarks Flavor structure $\bar{u} \leftrightarrow \bar{d} \leftrightarrow s, \bar{s}$

Longitudinal polarization $q_+ \leftrightarrow q_-$

- \rightarrow QCD vacuum structure
- \rightarrow Chiral dynamics, "pion cloud"
- Exclusive meson production $\gamma^*N \to M+B$

Requires $Q^2 > 10 \,{\rm GeV}^2$ for dominance of "pointlike" configurations \rightarrow pQCD

Meson quantum numbers select spin/flavor component of GPD

Information about meson wave function: Size, flavor structure

Quark imaging: Sea quarks

- Do strange and non-strange sea quarks have the same spatial distribution?
 - $\rightarrow \pi N$ or $K\Lambda$ components in nucleon? \rightarrow QCD vacuum fluctuations?
- EIC: Exclusive π and K production

High luminosity for low rates, differential measurements in x, t, Q^2 Kinematic reach in Q^2, x

Recoil detection for exclusivity, t-distributions

Spatial structure of nonperturbative sea – many more examples!

Quark imaging: Polarization

• Deformation of transverse distributions by transverse polarization of nucleon

Helicity-flip GPD, cf. Pauli FF

• EIC: Exclusive ρ and ϕ production with transversely polarized beam

Excellent statistics at $Q^2 > 10 \ {\rm GeV}^2$

Transverse polarization natural for collider

Exclusive processes: Why lower energies

T. Horn et al. 2008

• Example: Exclusive production $ep \rightarrow e' \pi^+ n$

Physics interest x > 0.01: Non-perturbative sea quarks

- Lower–energy, symmetric collider
 - \rightarrow Wider π^+ angular distribution: Detection, angular resolution
 - \rightarrow Wider recoil n distribution: t-resolution
- Detector simulations in progress

Exclusive processes at x > 0.01: Better prospects with lower-energy, more symmetric collider!

Exclusive processes: Beyond transverse imaging

• Longitudinal correlations in nucleon

GPDs at $x' \neq x$: Correlated $q\bar{q}$ pairs in nucleon \rightarrow QCD vacuum structure, relativistic nature of nucleon

EIC: Reveal correlations through exclusive meson, γ at x>0.1, Q^2 dependence

... needs kinematic coverage way beyond JLab 12 GeV

• Orbital motion of quarks/gluons

TMDs and orbital motion from semi-inclusive DIS: Major component of EIC program

Connection with GPDs: Unintegrated distributions, Ji sum rule

... should be discussed together!

Exclusive processes: Baryon/meson structure

• N* resonance excitation through hard exclusive process

QCD factorization: Hard process as transition operator Frankfurt, Strikman, Polyakov

New quantum numbers!

- New probes of meson structure Meson size $\leftrightarrow Q^2$ dependence, flavor structure "Exotics" from QCD counting rules
- Diffractive dissociation in exclusive vector meson production

Quantum fluctuations of gluon density: Fundamental property of many–body system Frankfurt, Strikman, Treleani, CW

Interesting opportunities, should be explored further!

Summary

- High–luminosity ep/eA collider offers unique capabilities for gluon and quark imaging through exclusive processes
 - \rightarrow Fundamental QCD structure of nucleon/nuclei, non-perturbative dynamics
 - \rightarrow Visualization, 3D images
 - \rightarrow Synergy with lattice QCD: GPD moments
 - $\rightarrow\,$ Essential input for pp@LHC, small–x

... Potential to become "golden experiment"

- Challenging experiments: Low rates, differential measurements, exclusivity, *t*-resolution, etc.
 - \rightarrow Driver of accelerator/detector requirements
 - \rightarrow Need to control systematics!
- Explore other interesting aspects of exclusive processes: Longitudinal correlations, meson structure, diffraction, . . .