Physics with a low/medium energy EIC

C. Weiss (JLab), DIS2009 Future Facilities, 28–Apr–09 with R. Ent, T. Horn, Ch. Hyde, P. Turonski + JLab CASA group

- Several key issues in nucleon structure require/favor kinematics $x\sim 10^{-1},~Q^2\leq 20-30\,{\rm GeV}^2$
 - Transverse imaging of nucleon with GPDs
 - Orbital angular momentum L_q and p_T dependence
 - Flavor decomposition in semi-inclusive DIS
- What collider energies do we need to address them?
 - CM energy, luminosity
 - − Detectability: Angular distributions, particle ID, energy resolution ←
- New high–luminosity medium–energy EIC concept at JLab

 $\mathcal{L} = \text{few} \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}, \quad E_e/E_p = 5/30 - 60 \text{ GeV}$

Context

- Traditional EIC assumption: Common machine for small-*x* physics and nucleon structure
- Recently: Detailed process simulations, emerging detector concepts. Many nucleon structure issues favor lower, more symmetric energies!
- "Staging:" Several medium–energy EIC options discussed
 Staged eRHIC: 2/250 or 4/250 GeV
 Medium–energy EIC at JLab: 5/30 5/60 GeV
 - ... Should address distinct physics program!
- Low–energy collider ideas

ENC at GSI JLab–COSY ring–ring collider and other studies

Transverse imaging: GPDs

• Exclusive meson production: Generalized parton distributions

 $\begin{array}{ll} J/\psi,\phi & \mbox{gluon} \\ \rho^0 & \mbox{gluon, singlet q.} \\ \pi,K,\rho^+,K^* & \mbox{non-singlet quark} \end{array}$

- Transverse spatial distribution of quarks/gluon in nucleon
 - \rightarrow Nucleon structure in QCD: Valence quarks, pion cloud
 - \rightarrow High–energy pp at LHC: Transverse geometry
 - \rightarrow Saturation: b--dependence, QCD dipole model

Transverse imaging: Non-singlet quarks

• Transverse distribution of quark flavor/charge/helicity from exclusive $\pi, K, \rho^+, K^*, \ldots$

 \rightarrow QCD vacuum structure, chiral dynamics

- $\rightarrow~$ valence quark structure
- Experimental requirements
 - $x \sim 10^{-1}$ Non-diffractive processes, cross secs drop with energy
 - $Q^2 \, < \, 20 \, {
 m GeV}^2$ limited range
 - $L \sim 10^{34}$ cross secs $\sim 1\text{--}10$ pb, drop with Q^2
 - + exclusivity, *t*-resolution \leftarrow

EIC: Want non-singlet quark imaging at $x \sim 0.1$

Transverse imaging: EIC simulations

- Here: Exclusive production $ep \rightarrow e' \pi^+ n$
- Lower-energy, symmetric collider
 - \rightarrow wider π^+ angular distribution: Detection, angular resolution
 - \rightarrow wider recoil n distribution: t-resolution
- Next step: Detector simulations

Exclusive processes: Much better prospects with lower–energy, more symmetric EIC

T. Horn et al. 2008

Transverse imaging: Gluons

- Transverse distribution of gluons from exclusive J/ψ
 - $x \le 10^{-2}$ HERA H1, ZEUS FNAL 82

larger x fixed-target

• EIC expectations

 $\begin{array}{l} \mbox{Cover region } 10^{-2} < x < 0.3 \\ W < 30 \ \mbox{GeV} \end{array}$

- \rightarrow Valence structure
- \rightarrow Hard procs in pp at LHC

Exclusivity, *t*-resolution: Recoil proton detection

EIC: Want gluon imaging up to valence region $x\sim 0.3$

Transverse imaging: Gluons

• Exclusive $\gamma p \rightarrow J/\psi + p$: Much wider angular spread of recoil proton at lower energies:

 $-t\sim E_p^2(\Theta-180^\circ)^2$

EIC: Better *t*-resolution with low-energy option

Flavor decomposition in semi-inclusive DIS

- Fragmentation process tags flavor of active quark in DIS
- Want sensitivity at $x \ge 10^{-1}$
 - $\frac{\Delta q(x)}{q(x)}$ relative polarization \bar{d}
 - $rac{ar{d}-ar{u}}{ar{d}+ar{u}}$ rel. flavor asymmetry
- Difficult to access with high-energy collider: $y > y_{\min}$

Flavor decomposition: EIC simulations

E. Kinney, J. Seele, 2007+

- Accessible ideally with medium–energy EIC
 - $\rightarrow\,$ Much better statistics at $x\geq 0.1$
 - ightarrow Good particle ID range of $E_h = 1-10 \text{ GeV}$ suited to relevant range of $z = E_h/\nu$

Flavor decomposition in SIDIS favors medium-energy EIC

```
Spin: From \Delta G to L_q
```


• ΔG interesting in its own right: Requires Q^2 -dependence, wide kinematic coverage \rightarrow high-energy EIC

> How much will be needed after JLab12 + COMPASS + RHIC Spin?

- Expected ΔG small, probably will not account for nucleon spin!
 - \rightarrow Orbital ang. momentum L_q, L_g ?
- Semi-inclusive DIS: k_T dependence
 - Indirect access to L_q
 - Progress in theory, interpretation
 - Requires $x \ge 0.1$

Spin: k_T dependence in SIDIS

- k_T dependent structures live at $x \ge 0.1$
 - Accessible ideally with medium–energy EIC
 - Good PID in relevant z-range 0.2 < z < 0.7
- J_q from GPDs? Model-dependent, but perhaps progress with JLab12...

 $\int dx \, x \, \left[H + E\right](x,\xi;t) \rightarrow \text{large } x!$

Orbital angular momentum observables require $x \ge 0.1$

High–luminosity medium–energy EIC at JLab

Energy $E_e/E_p = 5/30 - 60 \text{ GeV}$ $s_{ep} = 600 - 1200 \text{ GeV}^2$ Luminosity few × $10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ Circumf. ~ 600 m

Polarization, nuclear beams

- Conceptual development on-going, 1st version presented to EIC Advisory Committee Feb-09
- Rich physics program in nucleon structure/nuclear physics
 - Transverse nucleon imaging
 - Orbital angular momentum, \boldsymbol{k}_T dep.
 - Flavor decomposition: Sea quarks, polarization
 - Nuclei in QCD: Gluonic structure, coherent processes, transparency
- Possible stage to high–energy ELIC, but distinct physics program!

Summary

- Many nucleon structure applications favor medium-energy EIC
 - Transverse nucleon imaging
 - Orbital angular momentum L_q
 - Flavor decomposition
- JLab medium-energy EIC: Promising new development!
 - Significant progress during last 3 months
 - Hope to expand efforts. . .
- Needed: Further discussion, detailed simulations