Physics opportunities in kaon production

C. Weiss (JLab), CLAS12 RICH WG Meeting, 07–Aug–08

- Exclusive
 - Gluon GPD in ϕN (K^+K^-)
 - $H \leftrightarrow E$ separation in $K^*\Lambda$ with recoil polarization [LOI PAC 32 (2007)]
 - Spin structure in $K\Lambda, K\Sigma$

[Summary: Strikman, CW arXiv:0804.0456]

- Semi-inclusive
 - $\Delta s, \Delta \bar{s}$ from K^+, K^-
 - K^- as pure "non-valence" probe
 - Sivers effect in K production

Theory status: Exclusive, semi-inclusive

- Exclusive
 - QCD factorization theorem; clear operator structure of GPD \rightarrow Lattice, models
 - Higher twist substantial \rightarrow study/test reaction mechanism
 - GPD information from ratio observables (very channel-specific)
- Semi-inclusive, p_T integrated
 - Simple QCD factorization PDF \times FF . . . is it applicable at 6/12 GeV?
 - Formalism developed in NLO \rightarrow global analysis
- Semi-inclusive, p_T dependent
 - "True" QCD factorization likely complicated (soft factors); operator structure of TMDs?
 - Phenomenology based on naive factorization; primitive dynamical models
 - Correspondence with pQCD mechanism at $p_T \gg 1 \text{ GeV}^2 [\rightarrow \text{EIC}]$

Exclusive ϕ : Gluon GPD

[CLAS 01 Lukashin et al.; Theory: Frankfurt, Strikman 02]

- Clean probe of gluon $(g \gg \bar{s}, s)$ even at JLab energies
- \bullet Interesting observable: $t-\!{\rm distribution},$ change with Q^2 and x
 - \rightarrow Size of $\bar{s}s$ (higher twist)
 - \rightarrow Transverse gluon imaging
- L/T separation from $\phi \to K^+ K^-$ decay + SCHC
- Benefits from RICH? HERA: No kaon ID; peak in $M^2(+-)$

"Clean" GPD interpretation!

Exclusive $K^{*+}\Lambda$: Recoil polarization

• Λ recoil polarization asymmetry transverse to reaction axis sensitive to quark helicity-flip GPD

$$E(p \rightarrow \Lambda) = 2E_u - E_d - E_s$$
 w. SU(3)

cf. target polarization A_{UT}

- Combine with target polarization (incl. longitudinal)?
- L/T separation from $K^* \to K\pi$ decay + SCHC

Complements/extends measurements with transversely polarized target

Exclusive $K\Lambda, K\Sigma$: Strangeness polarization

• π, η, η', K probe "polarized" GPDs $\tilde{H} \leftrightarrow \Delta q, \ \tilde{E}$

 π^+, K^+ : Pole term in \tilde{E} prominent (cf. π/K form factor measurements)

 π^0, η, K^0 : Pole term zero/small, access to $\Delta d/\Delta u, \ \Delta s/\Delta u$ through cross section ratios [Eides, Frankfurt, Strikman 99]

- SU(3) in meson wave functions?
- L/T by Rosenbluth separation
- Also interesting: High-t meson production . . . Reaction mechanism?

- Semi-inlcusive K⁺, K⁻
 major source of information
 on s(x), s(x) + polarization
- HERMES: $s + \bar{s} \ll \bar{u} + \bar{d}$ at x > 0.1
 - \rightarrow non-perurbative origin of sea cf. asymmetry $\bar{d}-\bar{u}$
 - $\rightarrow\,$ nucleon structure

[Airapetian et al. 0803.2993]

• $\Delta s, \Delta \bar{s}$ small . . . can we measure significant non-zero polarization?

[Dressler, Goeke, Polyakov, CW, EPJC14:147 (2000)]

- $K^- = \bar{u}s$... no valence flavors!
 - \rightarrow "Pure" probe of sea
 - \rightarrow Avoid *u*-quark dominance

• $A_1^{K^-}$ most sensitive to $\Delta \bar{u} - \Delta \bar{d}$ in SIDIS (compared to π^+, π^-, K^+)

Estimate based on outdated PDFs and FFs. . . should be repeated with current parametrizations . . . no time!

Semi-inclusive: Sivers effect in K^+, K^-

[HERMES: M. Diefenthaler, 0706.2242]

- HERMES: Sizable Sivers asymmetry observed in K^+
 - \rightarrow Reaction mechanism . . . does factorization work?
 - \rightarrow If yes: Large Sivers function for sea quarks . . . very interesting for nucleon structure
 - \rightarrow How about K^- ?

Connections, extensions

- Exlcusive Λ production is limiting case of target fragmentation in DIS
 - \rightarrow Fracture functions [Trentadue, Veneziano 94; DeFlorian, Sassot et al., . . .]
 - $\rightarrow\,$ Correlations between current/target jets
 - ... Unexplored field!
- Hard exclusive processes with resonance excitation e.g. $\gamma_L^*\,p\,\,\to\,\,K^+\,\Lambda^*(1405)$
 - $\rightarrow\,$ Transition induced by well–defined QCD operator
 - $\rightarrow\,$ New information about resonance structure

Summary

- Exclusive: Need to discuss need for/benefits from RICH channel by channel . . . no "summary" statement
- Semi-inclusive: Clear benefits; should be relatively easy to quantify

$ ho^+ n$	$2[u-d]-[ar{u}-ar{d}]$
$ ho^0 p$	$rac{1}{\sqrt{2}}[2u+d]+rac{1}{\sqrt{2}}[2ar{u}+ar{d}]+ ext{gluon}$
ωp	$rac{1}{\sqrt{2}}[2u-d]+rac{1}{\sqrt{2}}[2ar{u}-ar{d}]+ ext{gluon}$
$K^{*+}\Lambda$	$-rac{2}{\sqrt{6}}[2u-d-s]$
	$+rac{1}{\sqrt{6}}[2ar{u}-ar{d}-ar{s}]$
$K^{*+}\Sigma^0$	$-rac{2}{\sqrt{2}}[d-s]+rac{2}{\sqrt{2}}[ar{d}-ar{s}]$
$K^{*0}\Sigma^+$	$[d-s]+[ar{d}-ar{s}]$
$\pi^+ n$	$2[\Delta u - \Delta d] + [\Delta \bar{u} - \Delta \bar{d}]$
$\pi^0 p$	$\frac{1}{\sqrt{2}}[2\Delta u + \Delta d] - \frac{1}{\sqrt{2}}[2\Delta \bar{u} + \Delta \bar{d}]$
$K^+\Lambda$	$-\frac{2}{\sqrt{6}}[2\Delta u - \Delta d - \Delta s]$
	$-\frac{1}{\sqrt{6}}[2\Delta \bar{u} - \Delta \bar{d} - \Delta \bar{s}]$
$K^+\Sigma^0$	$-\frac{2}{\sqrt{2}}[\Delta^d - \Delta^s] - \frac{1}{\sqrt{2}}[\Delta \bar{d} - \Delta \bar{s}]$
$K^0\Sigma^+$	$[\Delta d - \Delta s] - [\Delta \bar{d} - \Delta \bar{s}]$

[from Diehl, Kugler, Schäfer, CW 05]

• Meson selects spin

1-	$ ho, K^*$	$H \leftrightarrow q,$	E
0^{-}	π, K	$\tilde{H} \leftrightarrow \Delta q,$	\tilde{E}

- SU(3) flavor symmetry relates $p \rightarrow \Lambda$ transition GPDs to "usual" GPDs in proton $\langle \Lambda | \bar{s}u | p \rangle = -\frac{1}{\sqrt{6}} \langle p | 2 \bar{u}u - \bar{d}d - \bar{s}s | p \rangle$
 - \rightarrow Extract information on proton GPDs
- SU(3) for meson wavefunctions?