Sea quark polarization and nucleon structure

Ch. Weiss (JLab), PVAS Workshop, BNL, Apr. 26-27, 2007

Q: "How" do polarized sea quarks appear in nucleon?

- Dynamical models of nucleon structure
 "Pion cloud," Pauli blocking
- General properties of QCD

Chiral dynamics, large– N_c limit, . . .

PDFs in QCD: Non-singlets vs. singlet

 $\begin{array}{ll} \bar{u}+\bar{d}+\bar{s} & \text{singlet} \\ \bar{u}-\bar{d} & \text{non-singlet} \\ \bar{u}+\bar{d}-2\bar{s} & \text{non-singlet} \end{array}$

- Non-singlet sea quark distributions do not mix with gluon cf. valence $q \bar{q}$
- Total numbers conserved in LO $\int dx \left[\bar{u} - \bar{d} \right] (x, Q^2) = \text{const}$ $\Delta \bar{u} - \Delta \bar{d} \text{ etc.}$

NLO: Weak Q^2 -dependence

Non-perturbative origin! "Creation, not evolution"

PDFs in QCD: Scheme dependence at NLO

Fig. 2

- NLO: PDFs generally depend on factorization scheme
- Non-singlets much less affected than singlets

cf. Leader, Stamenov, Sidorov 98: $\Delta q_v(x)$ vs. $\Delta G(x)$ in JET, AB, $\overline{\text{MS}}$ schemes

Easy matching $pQCD \leftrightarrow$ non-perturbative models in non-singlet sector

Pion cloud: Flavor asymmetry $\overline{d} - \overline{u}$

Koepf et al., PRD 53, 2586 (1996)

- Qualitatively explains why $\bar{d} > \bar{u}$ in proton [Sullivan 72, Thomas 83]
- Quantitative fit of data requires unrealistic hard πN formfactors $\Lambda > 1$ GeV (cf. Bonn potential) [Jülich group 90's, ...]
- More realistic soft formfactors give at most 50% of exp. value [Koepf, Frankfurt, Strikman 95]

Consistent with chiral dynamics?

Pion cloud: Impact parameter representation

- Impact parameter-depend. PDF $q(x) = \int d^2b \; q(x,b)$
- Pion cloud <u>unique</u> contribution at
 - $b \sim 1/M_{\pi}$ "Yukawa tail"

$$x < M_{\pi}/M_N$$

• Large-b region accounts for only small part of exp. asymmetry!

Model-independent formulation, consistent with chiral dynamics

Strikman, CW 03/07

Pion cloud: Polarization

- $\pi\pi$ gives zero polarized asymmetry
- Various models with vector meson exchange give very small polarized asymmetry
 ... not distinctive ... arbitrary!

[Fries et al. 98; Boreskov et al. 98, Cao et al. 01, . . .]

π-"σ" interference with hard formfactors gives large positive Δū – Δd
 → qualitative agreement with quark models!
 [Dressler et al. 99; Fries, Schäfer, CW 02]

 $\pi\sigma$ closest analog to $\pi\pi$ in polarized case . . . qualitative picture!

Quark models: Pauli blocking

- Dirac wave function of confined quark has negative energy components
- Cavity creates non-perturbative sea of $\bar{q}q$ pairs (cf. "Temperature" $T \neq 0$)
- Pauli blocking: $u \uparrow, d \downarrow$ reduce $\bar{u} \downarrow, \bar{d} \uparrow$ $\rightarrow \bar{d} - \bar{u} > 0, \quad \Delta \bar{u} - \Delta \bar{d} > 0.$

Qualitative picture, predicts $\Delta \bar{u} - \Delta \bar{d} > 0$

[Signal, Thomas 88; Cao, Signal 01; see also: Bourrely, Soffer 95; Bhalerao et al. 99]

Large– N_c limit: Scaling of PDFs

• General N_c scaling of PDFs ($x \sim 1/N_c$) [Diakonov et al. 96]

 $\bar{u} + \bar{d}, \ \Delta \bar{u} - \Delta \bar{d} \sim N_c^2 \times \text{function}(N_c x)$ leading \leftarrow $\bar{u} - \bar{d}, \ \Delta \bar{u} + \Delta \bar{d} \sim N_c \times \text{function}(N_c x)$ subleading

• Generally works well quantitatively cf. $g_A^{(3)} \sim N_c$ [num: 1.26], $g_A^{(0)} \sim N_c^0$ [num: ~ 0.3]

Large–
$$N_c$$
 limit suggests $|\Delta ar{u} - \Delta ar{d}| \gg |ar{u} - ar{d}|$. . . no dynamics yet!

Large– N_c limit: Pion cloud in $d - \bar{u}$

- Nucleon intermediate state alone gives $\bar{u} - \bar{d} \sim N_c^2 \times \text{function}(N_c x)$ subleading!
- N and Δ degenerate at large N_c : $M_N - M_\Delta \sim N_c^{-1}, \quad g_{\pi N \Delta} = \frac{3}{2} g_{\pi N N}$
- Cancellation between N and Δ restores proper subleading behavior

Pion cloud contribution to $\bar{u} - \bar{d}$ absent in large- N_c limit!

Strikman, CW 03

Chiral quark-soliton model: Concept

- Generic model of nucleon based on
 - Large– N_c limit
 - Effective chiral dynamics
- Quarks move independently in self-consistent classical pion field ("soliton")
- Fully relativistic, field-theoretical description: Completeness of states
 - Partonic sum rules
 - Positivity $q(x), \bar{q}(x) > 0$
- Describes PDFs at scale $\mu \sim 600 \text{ MeV}$ ("cutoff" of chiral symmetry breaking)

[Basics: Diakonov, Petrov, Pobylitsa 88; PDFs: Diakonov et al. 96+]

- Describes $\overline{d} \overline{u}$ data parameter-free!
- Predicts large $\Delta \bar{u} \Delta \bar{d} > 0$

• SU(3) symmetry:
$$\Delta \bar{u} + \Delta \bar{d} - 2\Delta \bar{s} = \frac{3F - D}{F + D} (\Delta \bar{u} - \Delta \bar{d})$$
 [num: 5/9]

[Diakonov et al. 96, Pobylitsa et al. 98]

Chiral quark-soliton model: Polarized experiments

 $\Delta \bar{u} - \Delta \bar{d}$ extracted from $A_1^{\pi,K}$ in SIDIS [HERMES, JLab 12 GeV] Dressler et al., EPJC 14, 147 (2000)

LO predictions for SSA A_L in W^{\pm} [RHIC] Dressler et al. EPJC 18, 719 (2001)

Summary

- Sea quark flavor asymmetries ("non-singlets") clean probe of nucleon structure, cf. valence quark distributions
- Simple qualitative pictures seem to agree on $\Delta \bar{u} \Delta \bar{d} > 0$
- Chiral quark–soliton model predicts $\Delta \bar{u} \Delta \bar{d} > |\bar{u} \bar{d}|$

Further studies

- Polarized quark distributions concentrated at smaller transverse distances than unpolarized ones (cf. GPDs) [Strikman, CW, in progress]
 - \rightarrow more central pp collisions
 - \rightarrow different event characteristics (multiplicity)
 - \rightarrow new "handle" on transverse structure!