Binding of Charmed Mesons (D, D) and J/Ψ in Nuclei

CIPANP 2009, San Diego, California, 05/27/2009

K. Tsushima (JLab)

KT *et al.*, Phys. Rev. C 59, 2824 (1999) G. Krein, KT, A.W. Thomas (work in progress) For other mesons and review of QMC: K. Saito, KT, A.W. Thomas, PPNP, 58, 1 (2007)

Outline

- Introduction
- QMC model, finite nuclei
- **D**, **D** in a nuclear medium
- J/Ψ in a nuclear medium
- Summary, outlook

Introduction

- (Large) nuclei, and nuclear matter in terms of quarks and gluons (or QCD) ???!!!
- NN,NNN,NNNN... interactions ⇒
 Nucleus ? ⇐ shell model, MF model,...
- Lattice QCD: still extracting NN and NY interactions, [Y=hyperons: Λ,Σ,Ξ]
- Quark model based description of nucleus
- Hadron properties in a nuclear medium

The QMC model P.A.M. Guichon, PLB 200, 235 (1988)

At Nucleon Level Response to the Applied Scalar Field is the Scalar Polarizability

Nucleon response to a chiral invariant scalar field is then a nucleon property of great interest...

$$M^{*}(\vec{R}) = M - g_{\sigma}\sigma(\vec{R}) + \frac{d}{2} \left(g_{\sigma}\sigma(\vec{R})\right)^{2}$$

Non-linear dependence scalar polarizability d ¹/₄ 0.22 R in original QMC (MIT bag)

> Indeed, in nuclear matter at mean-field level (e.g. QMC), this is the **ONLY place the response of the internal structure of the nucleon enters.**

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Association for the U.S. Department of Energy

Bound quark Dirac spinor (1s_{1/2})

Quark Dirac spinor in a bound hadron:

$$q_{1s}(\mathbf{r}) = \begin{pmatrix} U(\mathbf{r}) \\ i \vec{\sigma} \cdot \hat{\mathbf{r}} L(\mathbf{r}) \end{pmatrix} \chi$$

Lower component is enhanced !

- \implies $g_{A^*} < g_A : ~ |U|^2 (1/3) |L|^2,$
- \implies Decrease of scalar density \implies

Decrease in Scalar Density

Scalar density (quark): ~ |U|^2 - |L|^2, ↓

- M_N*, N wave function, Nuclear scalar density etc., are self-consistently modified due to the N internal structure change !
- ⇒ Novel Saturation mechanism !

Nuclear (Neutron) matter, E/A

Novel saturation mechanism !

Incompressibility QHD: K ≈ 500 MeV QMC: K ≈ 280 MeV (Exp. 200 ~ 300 MeV)

PLB 429, 239 (1998)

Finite nuclei (²⁰⁸Pb energy levels)

NPA 609, 339 (1996)

Large mass **nuclei Nuclear matter**

Based on quarks !

Hadrons Hypernuclei

(the latest QMC)

Summary : Scalar Polarizability

- Can always rewrite non-linear coupling as linear coupling plus non-linear scalar self-coupling – likely physical origin of non-linear versions of QHD
- In nuclear matter this is **the only place** the internal structure of the nucleon enters in MFA
- Consequence of **polarizability** in atomic physics is **many-body forces:**

Thomas Jefferson National Accelerator Facility

$$\mathbf{V} = \mathbf{V}_{12} + \mathbf{V}_{23} + \mathbf{V}_{13} + \mathbf{V}_{123}$$

Operated by Jefferson Science Association for the U.S. Department of Energy

efferson C

$QMC \iff QHD$

- QHD shows importance of relativity : mean σ , ω and ρ fields
- **QMC** goes **far beyond QHD** by incorporating effect of hadron **internal structure**
- Minimal model couples these mesons to **quarks** in relativistic quark model e.g. MIT bag, or confining NJL... **any other quark models**
- $g_{\sigma}^{\ q}$, $g_{\omega}^{\ q}$, $g_{\rho}^{\ q}$ fitted to ρ_0 , E/A and symmetry energy
- <u>No additional parameters</u> predict change of structure and binding in nuclear matter of all hadrons: e.g. ω , ρ , η , J/ψ , N, Λ , Σ , $\Xi \implies$ see later !

Linking QMC to Familiar Nuclear Theory

Since early 70's tremendous amount of work in nuclear theory is based upon **effective forces**

- Used for everything from nuclear astrophysics to collective excitations of nuclei
- Skyrme Force: Vautherin and Brink

In Paper : Guichon and Thomas, Phys. Rev. Lett. 93, 132502 (2004) explicitly obtained effective force, 2- plus 3- body, of Skyrme type

- equivalent to QMC model (required expansion around $\sigma = 0$)

Operated by Jefferson Science Association for the U.S. Department of Energy

ollerson (

Physical Origin of Density Dependent Force of the Skyrme Type within the QMC model

That is, apply new **effective force** directly to calculate nuclear properties using Hartree-Fock (as for usual well known force)

	E_B (MeV, exp)	E_B (MeV, QMC)	r_c (fm, exp)	r_c (fm, QMC)
^{16}O	7.976	7.618	2.73	2.702
^{40}Ca	8.551	8.213	3.485	3.415
^{48}Ca	8.666	8.343	3.484	3.468
^{208}Pb	7.867	7.515	5.5	5.42

• Where analytic form of (e.g. $H_0 + H_3$) piece of energy functional derived from QMC is:

$$\mathcal{H}_{0} + \mathcal{H}_{3} = \rho^{2} \left[\frac{-3 G_{\rho}}{32} + \frac{G_{\sigma}}{8 (1 + \mathbf{O} \rho G_{\sigma})^{3}} - \frac{G_{\sigma}}{2 (1 + \mathbf{O} \rho G_{\sigma})} + \frac{3 G_{\omega}}{8} \right] + \frac{1}{8 (1 + \mathbf{O} \rho G_{\sigma})^{3}} + \frac{G_{\sigma}}{2 (1 + \mathbf{O} \rho G_{\sigma})} + \frac{G_{\sigma}}{8} \right] + \frac{1}{8 (1 + \mathbf{O} \rho G_{\sigma})^{3}} + \frac{G_{\omega}}{8} \right],$$

$$\mathcal{F}_{1} = \mathcal{F}_{2} = \mathcal$$

Operated by Jefferson Science Association for the U.S. Department of Energy

Mesons in nuclear medium in QMC

< σ

Nuclear Binding !!

 $< \omega$

(For a review, PPNP 58, 1 (2007))

C

Light (u,d) quarks interact self-consistently with mean σ and ω fields

$$\mathbf{m}^* \mathbf{q} = \mathbf{m}_{\mathbf{q}} - \mathbf{g}_{\sigma}^{\mathbf{q}} \sigma = \mathbf{m}_{\mathbf{q}} - \mathbf{V}_{\sigma}^{\mathbf{q}}$$

 $\underbrace{ \text{$ **nonlinear in } \boldsymbol{\sigma} }_{M^*M \cong MM - \underbrace{g_{\sigma}^M \boldsymbol{\sigma}}_{\sigma} + (\operatorname{d}^M/2)(\underbrace{g_{\sigma}^M \boldsymbol{\sigma}}_{\sigma}) }**

$$[i \partial \cdot \gamma - (m_q - V_\sigma^q) + \gamma_0 V_\omega^q] q = 0$$

 σ, ω fields: **no couplings** with **s,c,b** quarks!!

Applied quark model (lattice) mass formula

Scalar potentials in QMC respects SU(3) (light quark # !)

D meson scalar potential

16

D and D* potentials in nuclear matter

D (**cd**) **total** potential in **Pb**

D (cd) bound state wave functions in **Pb**

D bound state energy in Pb

state	D ⁻ 1.96 *Vqω	νqω	D Vqω No Coulomb	¯0 1.96 *Vqω	ν^{Π0} ν αω	ν ν φ
1s	-10.6	-35.2	-11.2	unbound	-25.4	-96.2
1р	-10.2	-32.1	-10.0	unbound	-23.1	-93.0
2s	-7.7	-30.0	-6.6	unbound	-19.7	-88.5

J/ pot. in matter (color octet)

- $H = \frac{\alpha_{\psi}}{2} < N | E_a \cdot E_a | N >$
- M.B. Voloshin: chromo-polarizability
 - at *ρ*₀, **V< -21** (*α*ψ/2 GeV ⁻³) [MeV],
- PPNP 61, 455 (2008)
- S.H. Lee, C.M. Ko: QCD Stark effect
- V = 8 + 3 (D-loop) [MeV], prc 67, 038202 (2003)
- <u>M. Luke, A.V. Manohar, M.J. Savage</u>: EFT
- V = -11 ~ 8 [MeV], PLB 288, 355 (1992)

$J/\Psi(\Upsilon,\phi)$ mass in medium (loop!)

D-D loop: **J/P** potential in matter

Summary, outlook

1. **D** will form nuclear (atomic) bound state 2. J/Ψ potential in nuclear matter **Color octet, QCD Stark** \implies attraction! Color singlet, **D-D** loop \implies attraction! (Loops with $D^* \implies additional attraction!)$ 3. J/Ψ will be **bound** in (large mass) nuclei 4. Loops involve D* must be added 5. **Y**, Φ?

Spin-Orbit Splitting

	Neutrons	Neutrons	Protons	Protons
	(Expt)	(QMC)	(Expt)	(QMC)
1(0)	(1 0			
O ⁰¹	6.10	6.01	6.3	5.9
$1p_{1/2}$ - $1p_{3/2}$				
⁴⁰ Ca	6.15	6.41	6.0	6.2
$1d_{3/2}$ - $1d_{5/2}$				
⁴⁸ Ca	6.05	5.64	6.06	5.59
$1d_{3/2}$ - $1d_{5/2}$	(Sly4)		(Sly4)	
²⁰⁸ Pb	2.15	2.04	1.87	1.74
$2d_{3/2}$ - $2d_{5/2}$	(Sly4)		(Sly4)	

Agreement generally very satisfactory – NO parameter adjusted to fit

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Association for the U.S. Department of Energy

Jefferson C