# **Strangeness Content of the Nucleon**



### **Anthony W. Thomas Asia-Pacific Few Body Conference** SUT, Thailand : July 26<sup>th</sup>, 2005



homas Jefferson National Accelerator Facility



## **Outline**

- The QCD Vacuum
- Quarks to Hadrons
- Measurements of Nucleon Form Factors
- Latest Results on Strangeness
- A Precise Theoretical Calculation of G<sub>M</sub><sup>s</sup>
- What needs measuring?





Thomas Jefferson National Accelerator Facility

# **Topology of QCD Vacuum**





#### Leinweber: see CSSM web pages

Thomas Jefferson National Accelerator Facility



## Powerful Qualitative New Insights From Lattice QCD

**QCD** sum rules :

$$\begin{split} \left\langle 0 \left| \frac{\alpha_s}{\pi} G^i_{\mu\nu} G^i_i \right| 0 \right\rangle &= \left\langle 0 \left| \frac{2\alpha_s}{\pi} (B^2 - E^2) \right| 0 \right\rangle \\ &= (350 \pm 30 \text{ MeV})^4, \end{split}$$

- Non-trivial topological structure of vacuum linked to dynamical chiral symmetry breaking
- There are regions of positive and negative topological charge
- BUT they clearly are NOT spherical

NOR are they weakly interacting!



Thomas Jefferson National Accelerator Facility



### **Quark Condensate**

$$\langle \bar{u}u \rangle = \langle \bar{d}d \rangle = \langle \bar{s}s \rangle = -(225 \pm 25 \text{ MeV})^3$$

at a renormalization scale of about 1 GeV.

 $\sigma \quad \text{commutator measures chiral symmetry breaking} \\ \approx \text{valence + pion cloud +} \\ \text{volume * (difference of condensate in & out of N)}$ 

and last term is as big as 20 MeV (or more) i.e. presence of nucleon "cleans out" vacuum to some extent

Hence: Model independent LO term for in-medium condensate

$$\frac{Q(\rho_B)}{Q_0} \simeq 1 - \frac{\sigma_N}{f_\pi^2 m_\pi^2} \rho_B$$

#### BUT this has no new physics at all!





Thomas Jefferson National Accelerator Facility

# **QCD** and the Origin of Mass

# u + u + d = protonmass: 0.003 + 0.003 + 0.006 $\neq$ 0.938

### HOW does the rest of the proton mass arise?



U.S. DEPARTMENT OF ENERGY

Thomas Jefferson National Accelerator

### **χ'al Extrapolation Under Control when Coefficients Known – e.g. for the nucleon**



### FRR give same answer to <<1% systematic error!

|                | Bare Coefficients |                 |                 |     | Renormalized Coefficients |          |          |           |
|----------------|-------------------|-----------------|-----------------|-----|---------------------------|----------|----------|-----------|
| Regulator      | $a_0^{\Lambda}$   | $a_2^{\Lambda}$ | $a_4^{\Lambda}$ | Λ   | $c_0$                     | $c_2$    | $c_4$    | $m_N$     |
| Monopole       | 1.74              | 1.64            | -0.49           | 0.5 | 0.923(65)                 | 2.45(33) | 20.5(15) | 0.960(58) |
| Dipole         | 1.30              | 1.54            | -0.49           | 0.8 | 0.922(65)                 | 2.49(33) | 18.9(15) | 0.959(58) |
| Gaussian       | 1.17              | 1.48            | -0.50           | 0.6 | 0.923(65)                 | 2.48(33) | 18.3(15) | 0.960(58) |
| Sharp cutoff   | 1.06              | 1.47            | -0.55           | 0.4 | 0.923(65)                 | 2.61(33) | 15.3(8)  | 0.961(58) |
| Dim. Reg. (BP) | 0.79              | 4.15            | +8.92           | _   | 0.875(56)                 | 3.14(25) | 7.2(8)   | 0.923(51) |

Leinweber et al., PRL 92 (2004) 242002



Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

llerson

### Convergence from LNA to NLNA is Rapid – Using Finite Range Regularization

| Regulator | LNA | NLNA |
|-----------|-----|------|
| Sharp     | 968 | 961  |
| Monopole  | 964 | 960  |
| Dipole    | 963 | 959  |
| Gaussian  | 960 | 960  |
| Dim Reg   | 784 | 884  |

### $M_N$ in MeV

Thomas Jefferson National Accelerator Facility



Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

ellerson C

### Comparison with $\chi$ QSM



#### Goeke et al., hep-lat/0505010



Thomas Jefferson National Accelerator Facility



## Analysis of pQQCD ρ data from CP PACS





Thomas Jefferson National Accelerator Facility



### **Infinite Volume Unitary Results**

### All 80 data points drop onto single, well defined curve



#### Allton, Young et al., hep-lat/0504022



Thomas Jefferson National Accelerator Facility



## JLAB: Unique Capabilities for Investigating QCD in the Non-Perturbative Regime



Providing ~2300 international users with a unique electron beam, three experimental halls, and computational and theory support



JLab is a world leader in SRF technology: SNS, 12 GeV Upgrade, FEL, RIA, and others in the Office of Science 20-Year Facilities Outlook



Superconducting rf (SRF) technology makes the circulating accelerator feasible

High luminosity, high resolution detectors in Halls A, B, and C.



Thomas Jefferson National Accelerator Facility

## **Precision Tests of Nucleon Structure**

 Astonishing discovery concerning proton electric form factor



But what about contribution from non-valence quarks

### - especially strange quarks ?





Thomas Jefferson National Accelerator Facility

### Strangeness Widely Believed to Play a Major Role – Does It?

• As much as 100 to 300 MeV of proton mass:

$$M_N = \langle N(P)| - \frac{9\,\alpha_s}{4\,\pi} \operatorname{Tr}(G_{\mu\nu}G^{\mu\nu}) + m_u\bar{\psi}_u\psi_u + m_d\bar{\psi}_d\psi_d + m_s\bar{\psi}_s\psi_s|N(P)\rangle$$

Hence 110 
$$\pm$$
 110 MeV (increasing to 180 for higher  $\sigma_N$ )

 $\Delta M_N^{s-\text{quarks}} = \frac{ym_s}{\sigma_N} \sigma_N$ 

• Through proton spin crisis: As much as 10% of the spin of the proton

### • HOW MUCH OF THE MAGNETIC FORM FACTOR?





70?

 $y=0.2 \pm 0.2$ 

Thomas Jefferson National Accelerator Facility

### **G0 Experiment at Jefferson Lab**





Thomas Jefferson National Accelerator Facility



# World Data @ $Q^2 = 0.1 \text{ GeV}^2$



Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

 $G_{E}^{s} = -0.013 \pm 0.028$   $G_{M}^{s} = +0.62 \pm 0.31$   $\pm 0.62 \ 2\sigma$ <u>Contours</u>  $---- 1\sigma, 2\sigma$  ---- 68.3, 95.5% CL

#### <u>Theories</u>

- 1. Leinweber, et al. PRL **94** (05) 212001
- 2. Lyubovitskij, et al. PRC 66 (02) 055204
- Lewis, et al.
   PRD 67 (03) 013003
- 4. Silva, et al.



# Simple Fits to World Hydrogen Data

• Fit

$$G_{E}^{s}(Q^{2}) + \eta(Q^{2}, E_{i})G_{M}^{s}(Q^{2}) = \frac{4\pi\alpha\sqrt{2}}{G_{F}Q^{2}}\frac{\varepsilon G_{E}^{p^{2}} + \tau G_{M}^{p^{2}}}{\varepsilon G_{E}^{p}(1+R_{V}^{(0)})}\left(A_{phys} - A_{NVS}(Q^{2}, E_{i})\right)$$

with simple forms for  $G_E^s$  ,  $G_M^s$ 

$$G_{E}^{s}(Q^{2}) = \frac{c_{2}Q^{4}}{1 + d_{1}Q^{2} + d_{2}Q^{4} + d_{3}Q^{6}} \quad \text{à la Kelly}$$

$$G_{M}^{s}(Q^{2}) = \frac{G_{M}^{s}(Q^{2} = 0)}{\left(1 + Q^{2}/\Lambda_{M}^{s}\right)^{2}}$$

with

 $G_M^s(Q^2 = 0) = 0.81$  from Q<sup>2</sup> = 0.1 GeV<sup>2</sup> plot, dipole ff

DHB, 17 June 2005

## "Fit" to World Hydrogen Data



## Significance & Comparison with Lattice QCD

- Size and sign of the strange magnetic moment is astonishing!
- Experimental isoscalar nucleon moment is 0.88  $\mu_N$ c.f. this result which is (Beck) - 0.54  $\mu_N$  : i.e. - 60% !!
- Also remarkable versus lattice QCD which gives

+0.03  $\pm$  0.01  $\mu_{\text{N}}$  (Leinweber et al., PRL 94 (2005) 212001)

Sign would require violation of universality of

valence quark moments by  $\sim 70\%$  !





Thomas Jefferson National Accelerator Facility

## Magnetic Moments within QCD



 $p = 2/3 u^p - 1/3 d^p + O_N$  $n = -1/3 u^p + 2/3 d^p + O_N$  $2p + n = u^p + 3 O_N$ (and  $p + 2n = d^p + 3 O_N$ )  $\Sigma^{+} = 2/3 \mathbf{u}^{\Sigma} - 1/3 \mathbf{s}^{\Sigma} + \mathbf{O}_{\Sigma}$  $\Sigma^{-} = -1/3 \mathbf{u}^{\Sigma} - 1/3 \mathbf{s}^{\Sigma} + \mathbf{O}_{\Sigma}$  $\Sigma^+$  -  $\Sigma^- = \mathbf{u}^{\Sigma}$  $O_{N} = 1/3 [2p + n - (u^{p} / u^{\Sigma}) (\Sigma^{+} - \Sigma^{-})]$ **HENCE:** Just these ratios from Lattice OCD  $O_{N} = 1/3 [n + 2p - (u^{n} / u^{\Xi}) (\Xi^{0} - \Xi^{-})]$ OR Office of U.S. DEPARTMENT OF ENERGY

## **Constraint from Charge Symmetry**

$$\begin{aligned} O_N &= \frac{2}{3} \,^{\ell} G_M^u - \frac{1}{3} \,^{\ell} G_M^d - \frac{1}{3} \,^{\ell} G_M^s \\ &= \frac{1}{3} \left( {}^{\ell} G_M^d - {}^{\ell} G_M^s \right) \,, \\ &= \frac{\ell G_M^s}{3} \left( \frac{1 - {}^{\ell} R_d^s}{{}^{\ell} R_d^s} \right) \,, \end{aligned}$$



$$G_M^s = \left(\frac{{}^{\ell}R_d^s}{1-{}^{\ell}R_d^s}\right) \left[3.673 - \frac{u_p}{u_{\Sigma^+}}\left(3.618\right)\right]$$

$$G_M^s = \left(\frac{{}^{\ell}R_d^s}{1 - {}^{\ell}R_d^s}\right) \left[-1.033 - \frac{u_n}{u_{\Xi^0}} \left(-0.599\right)\right]$$

#### Leinweber and Thomas, Phys. Rev. D62 (2000) 07505.

![](_page_20_Picture_6.jpeg)

![](_page_20_Picture_7.jpeg)

Thomas Jefferson National Accelerator Facility

# u<sup>p</sup>valence : QQCD Data Corrected for Full QCD Chiral Coeff's

![](_page_21_Figure_1.jpeg)

#### New lattice data from Zanotti et al.; Chiral analysis Leinweber et al.

![](_page_21_Picture_3.jpeg)

Thomas Jefferson National Accelerator Facility

![](_page_21_Picture_5.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_22_Figure_1.jpeg)

![](_page_22_Picture_2.jpeg)

Thomas Jefferson National Accelerator

![](_page_22_Picture_4.jpeg)

### **Check: Octet Magnetic Moments**

![](_page_23_Figure_1.jpeg)

#### Leinweber et al., hep-lat/0406002

![](_page_23_Picture_3.jpeg)

![](_page_23_Picture_4.jpeg)

### Convergence LNA to NLNA Again Excellent (Effect of Decuplet)

![](_page_24_Figure_1.jpeg)

![](_page_24_Picture_2.jpeg)

Thomas Jefferson National Accelerator Facility

![](_page_24_Picture_4.jpeg)

## **State of the Art Magnetic Moments**

|                | QQCD       | Valence    | Full QCD   | Expt.       |
|----------------|------------|------------|------------|-------------|
| р              | 2.69 (16)  | 2.94 (15)  | 2.86 (15)  | 2.79        |
| n              | -1.72 (10) | -1.83 (10) | -1.91 (10) | -1.91       |
| Σ+             | 2.37 (11)  | 2.61 (10)  | 2.52 (10)  | 2.46 (10)   |
| Σ-             | -0.95 (05) | -1.08 (05) | -1.17 (05) | -1.16 (03)  |
| Λ              | -0.57 (03) | -0.61 (03) | -0.63 (03) | -0.613 (4)  |
| <b>Ξ</b> 0     | -1.16 (04) | -1.26 (04) | -1.28 (04) | -1.25 (01)  |
| Ξ              | -0.65 (02) | -0.68 (02) | -0.70 (02) | -0.651 (03) |
| u <sup>p</sup> | 1.66 (08)  | 1.85 (07)  | 1.85 (07)  | 1.81 (06)   |
| u <sup>E</sup> | -0.51 (04) | -0.58 (04) | -0.58 (04) | -0.60 (01)  |

![](_page_25_Picture_2.jpeg)

Thomas Jefferson National Accelerator Facility

![](_page_25_Picture_4.jpeg)

### Accurate Final Result for G<sub>M</sub><sup>s</sup>

![](_page_26_Figure_1.jpeg)

1.25±0.12

#### Yields : $G_{M}^{s}$ = -0.046 ± 0.019 $\mu_{N}$

![](_page_26_Picture_4.jpeg)

Leinweber et al., (PRL June '05) hep-lat/0406002

![](_page_26_Picture_6.jpeg)

Thomas Jefferson National Accelerator Facility

Parity Violating Studies on <sup>1</sup>H and <sup>4</sup>He 3 GeV beam in Hall A  $\theta_{lab} \sim 6^{\circ}$  Q<sup>2</sup> ~ 0.1 (GeV/c)<sup>2</sup>

| target          | A <sub>PV</sub><br>G <sup>s</sup> = 0<br>(ppm) | Stat.<br>Error<br>(ppm) | Syst.<br>Error<br>(ppm) | sensitivity                                                              |
|-----------------|------------------------------------------------|-------------------------|-------------------------|--------------------------------------------------------------------------|
| <sup>1</sup> H  | -1.6                                           | 0.08                    | 0.04                    | δ(G <sup>s</sup> <sub>E</sub> +0.08G <sup>s</sup> <sub>M</sub> ) = 0.010 |
| <sup>4</sup> He | +7.8                                           | 0.18                    | 0.18                    | δ(G <sup>s</sup> <sub>E</sub> ) = 0.015                                  |

![](_page_27_Figure_2.jpeg)

**Brass-Quartz integrating detector** 

![](_page_27_Figure_4.jpeg)

# **Special Mentions.....**

![](_page_28_Picture_1.jpeg)

![](_page_28_Picture_2.jpeg)

![](_page_28_Picture_3.jpeg)

#### **Derek Leinweber**

#### **Ross Young**

#### **Stewart Wright**

![](_page_28_Picture_7.jpeg)

![](_page_28_Picture_8.jpeg)

Thomas Jefferson National Accelerator Facility

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_1.jpeg)

Operated by the Southeastern Universities Research Association for the U.S. Department

Jefferson Lab

Lattice data (from MILC Collaboration) : red triangles
Green boxes: fit evaluating σ's on same finite grid as lattice
Lines are exact, continuum results

![](_page_30_Figure_1.jpeg)

![](_page_31_Picture_0.jpeg)

![](_page_31_Picture_1.jpeg)

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

### FRR Mass well determined by data

![](_page_32_Figure_1.jpeg)

$$\sqrt{(M_V^{deg})^2 - \Sigma_{TOT}} = (a_0^{cont} + X_1 a + X_2 a^2) + a_2 (M_{PS}^{deg})^2 + a_4 (M_{PS}^{deg})^4 + a_6 (M_{PS}^{deg})^6$$

![](_page_32_Picture_3.jpeg)

Thomas Jefferson National Accelerator Facility

![](_page_32_Picture_5.jpeg)

### **Quark Condensate In-Medium**

Free space:

$$\langle \bar{u}u \rangle = \langle \bar{d}d \rangle = \langle \bar{s}s \rangle = -(225 \pm 25 \text{ MeV})^3$$

at a renormalization scale of about 1 GeV.

 $\sigma \quad \text{commutator measures chiral symmetry breaking} \\ \approx \text{valence + pion cloud +} \\ \text{volume * (difference of condensate in & out of N)}$ 

and last term is as big as 20 MeV (or more) i.e. presence of nucleon "cleans out" vacuum to some extent

Hence: Model independent LO term for in-medium condensate

$$\frac{Q(\rho_B)}{Q_0} \simeq 1 - \frac{\sigma_N}{f_\pi^2 m_\pi^2} \rho_B$$

#### BUT this has no new physics at all!

![](_page_33_Picture_9.jpeg)

![](_page_33_Picture_10.jpeg)

**Thomas Jefferson National Accelerator Facility** 

![](_page_34_Picture_0.jpeg)

### **Lattice QCD Simulation of Vacuum Structure**

#### Leinweber, Signal et al.

![](_page_35_Picture_2.jpeg)

![](_page_35_Picture_3.jpeg)

Operated by the Southeastern Universities Research Association for the U.S. Department

ellerson C

![](_page_35_Picture_5.jpeg)

![](_page_36_Picture_0.jpeg)

![](_page_36_Picture_1.jpeg)

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

![](_page_37_Picture_0.jpeg)

![](_page_37_Picture_1.jpeg)

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility