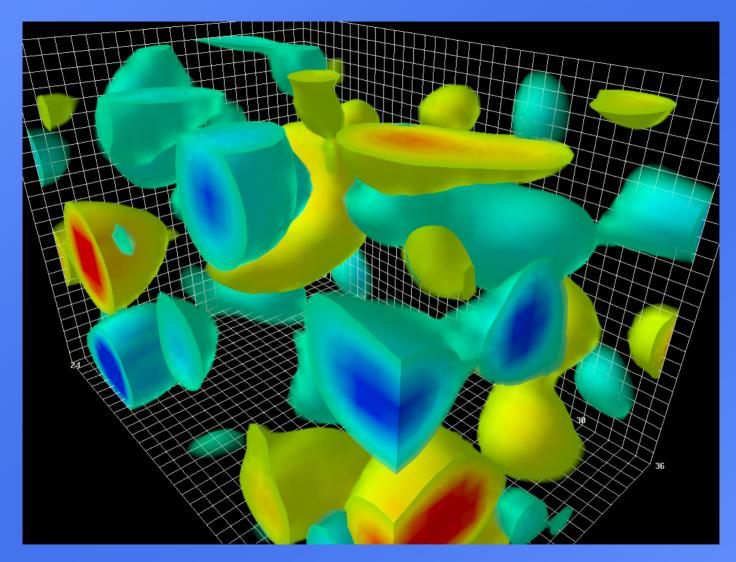

Strangeness Content of the Nucleon

Anthony W. Thomas Workshop on Precision ElectroWeak Interactions College of W&M : August 16th, 2005

U.S. DEPARTMENT OF ENERGY

Outline


- The QCD Vacuum
- Quarks to Hadrons
- Measurements of Nucleon Form Factors
- Latest Results on Strangeness
- A Precise Theoretical Calculation of G_M^s
- What needs measuring?

Thomas Jefferson National Accelerator Facility

Topology of QCD Vacuum

Leinweber: see CSSM web pages

Thomas Jefferson National Accelerator Facility

Powerful Qualitative New Insights From Lattice QCD

QCD sum rules :

$$\begin{split} \left\langle 0 \left| \frac{\alpha_s}{\pi} G^i_{\mu\nu} G^i_i \right| 0 \right\rangle &= \left\langle 0 \left| \frac{2\alpha_s}{\pi} (B^2 - E^2) \right| 0 \right\rangle \\ &= (350 \pm 30 \text{ MeV})^4, \end{split}$$

- Non-trivial topological structure of vacuum linked to dynamical chiral symmetry breaking
- There are regions of positive and negative topological charge
- BUT they clearly are NOT spherical

NOR are they weakly interacting!

Thomas Jefferson National Accelerator Facility

Quark Condensate

$$\langle \bar{u}u \rangle = \langle \bar{d}d \rangle = \langle \bar{s}s \rangle = -(225 \pm 25 \text{ MeV})^3$$

at a renormalization scale of about 1 GeV.

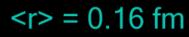
 $\sigma \quad \text{commutator measures chiral symmetry breaking} \\ \approx \text{valence + pion cloud +} \\ \text{volume * (difference of condensate in & out of N)}$

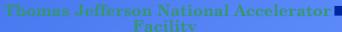
and last term is as big as 20 MeV (or more) i.e. presence of nucleon "cleans out" vacuum to some extent

Hence: Model independent LO term for in-medium condensate

$$\frac{Q(\rho_B)}{Q_0} \simeq 1 - \frac{\sigma_N}{f_\pi^2 m_\pi^2} \rho_B$$

BUT this has no new physics at all!





Thomas Jefferson National Accelerator Facility

Lattice QCD Simulation of Vacuum Structure

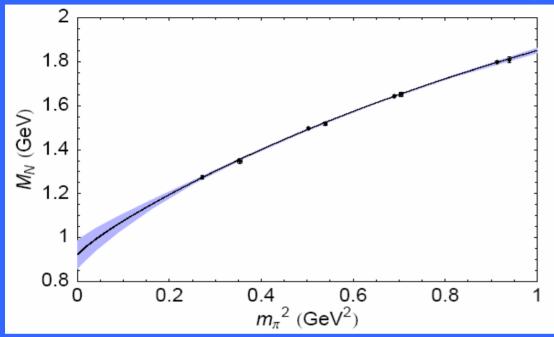
Leinweber, Signal et al.

Operated by the Southeastern Universities Research Association for the U.S. Department

ellerson C

QCD and the Origin of Mass

u + u + d = protonmass: 0.003 + 0.003 + 0.006 \neq 0.938


HOW does the rest of the proton mass arise?

U.S. DEPARTMENT OF ENERGY

Thomas Jefferson National Accelerator

χ'al Extrapolation Under Control when Coefficients Known – e.g. for the nucleon

FRR give same answer to <<1% systematic error!

	Bare Coefficients				Renormalized Coefficients			
Regulator	a_0^{Λ}	a_2^{Λ}	a_4^{Λ}	Λ	c_0	c_2	c_4	m_N
Monopole	1.74	1.64	-0.49	0.5	0.923(65)	2.45(33)	20.5(15)	0.960(58)
Dipole	1.30	1.54	-0.49	0.8	0.922(65)	2.49(33)	18.9(15)	0.959(58)
Gaussian	1.17	1.48	-0.50	0.6	0.923(65)	2.48(33)	18.3(15)	0.960(58)
Sharp cutoff	1.06	1.47	-0.55	0.4	0.923(65)	2.61(33)	15.3(8)	0.961(58)
Dim. Reg. (BP)	0.79	4.15	+8.92	_	0.875(56)	3.14(25)	7.2(8)	0.923(51)

Leinweber et al., PRL 92 (2004) 242002

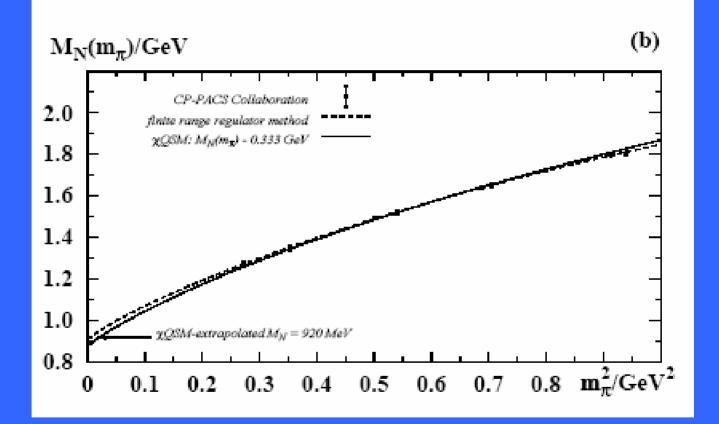
Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

llerson

Convergence from LNA to NLNA is Rapid – Using Finite Range Regularization

Regulator	LNA	NLNA
Sharp	968	961
Monopole	964	960
Dipole	963	959
Gaussian	960	960
Dim Reg	784	884

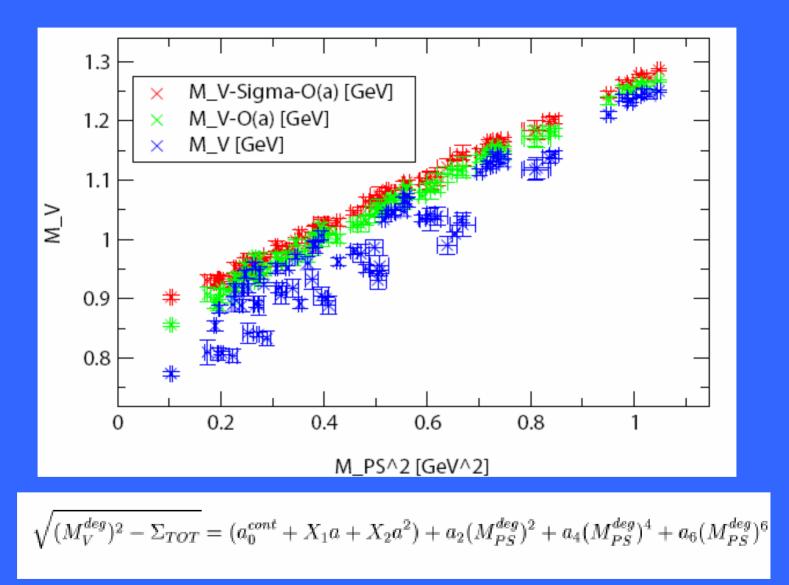
M_N in MeV


Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

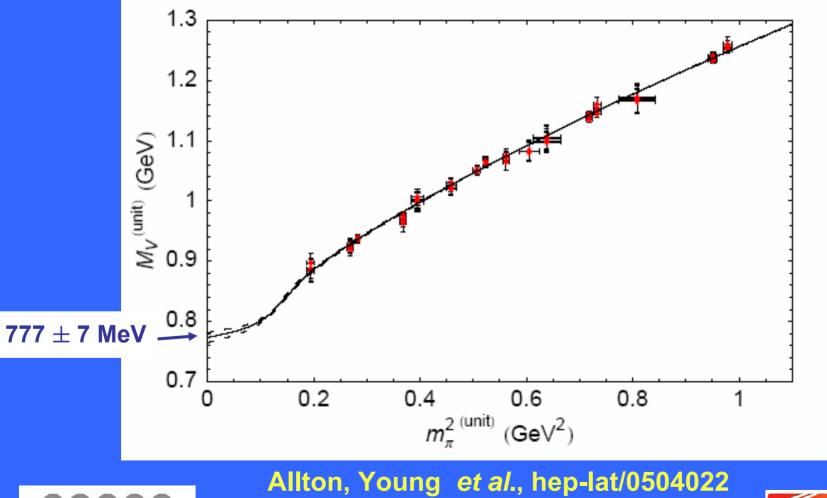
ellerson C

Comparison with χ QSM


Goeke et al., hep-lat/0505010

Thomas Jefferson National Accelerator Facility

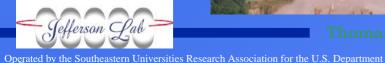
Analysis of pQQCD ρ data from CP PACS



Thomas Jefferson National Accelerator Facility

Infinite Volume Unitary Results

All 80 data points drop onto single, well defined curve

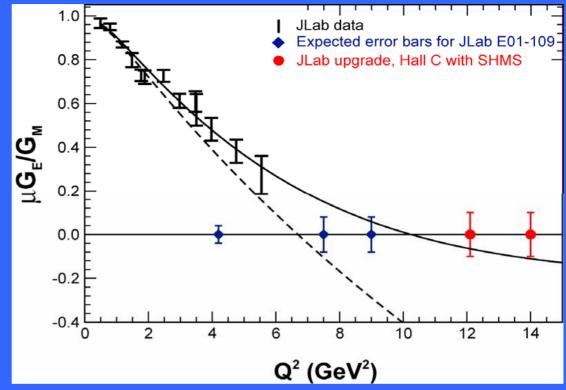

Thomas Jefferson National Accelerator Facility

JLAB: Unique Capabilities for Investigating QCD in the Non-Perturbative Regime

Providing ~2300 international users with a unique electron beam, three experimental halls, and computational and theory support

JLab is a world leader in SRF technology: SNS, 12 GeV Upgrade, FEL, RIA, and others in the Office of Science 20-Year Facilities Outlook

Superconducting rf (SRF) technology makes the circulating accelerator feasible


High luminosity, high resolution detectors in Halls A, B, and C.

Thomas Jefferson National Accelerator Facility

Precision Tests of Nucleon Structure

 Astonishing discovery concerning proton electric form factor

But what about contribution from non-valence quarks

- especially strange quarks ?

Thomas Jefferson National Accelerator Facility

Strangeness Widely Believed to Play a Major Role – Does It?

• As much as 100 to 300 MeV of proton mass:

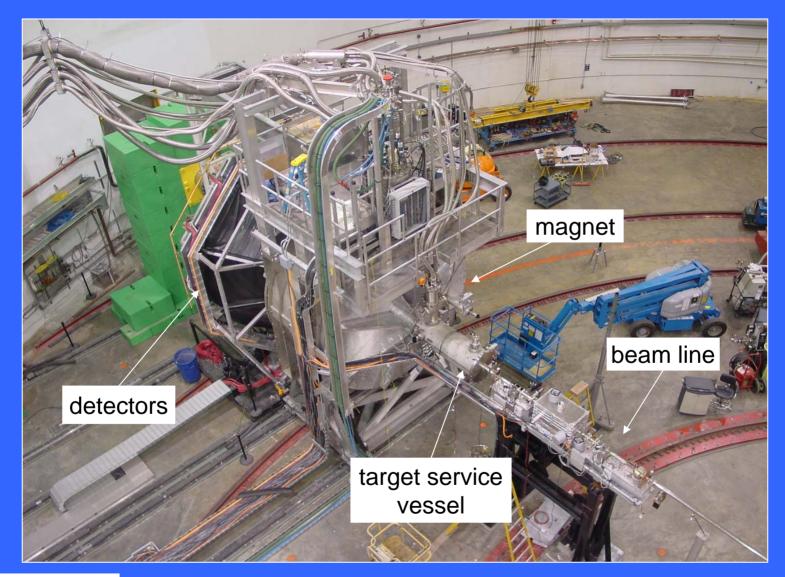
$$M_N = \langle N(P)| - \frac{9\,\alpha_s}{4\,\pi} \operatorname{Tr}(G_{\mu\nu}G^{\mu\nu}) + m_u\bar{\psi}_u\psi_u + m_d\bar{\psi}_d\psi_d + m_s\bar{\psi}_s\psi_s|N(P)\rangle$$

Hence 110
$$\pm$$
 110 MeV (increasing to 180 for higher σ_N)

 $\Delta M_N^{s-\text{quarks}} = \frac{ym_s}{m_s} \sigma_N$

• Through proton spin crisis: As much as 10% of the spin of the proton

• HOW MUCH OF THE MAGNETIC FORM FACTOR?



70?

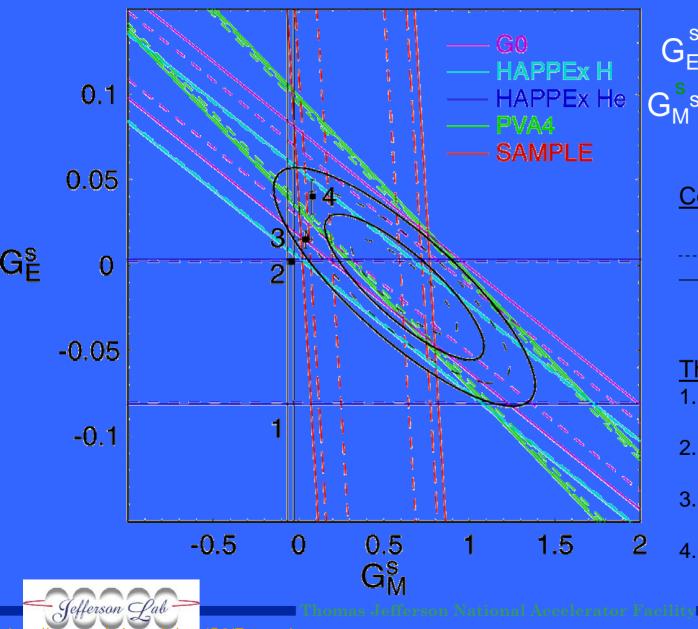
 $y=0.2 \pm 0.2$

Thomas Jefferson National Accelerator Facility

G0 Experiment at Jefferson Lab

Thomas Jefferson National Accelerator Facility

A4 at Mainz



Thomas Jefferson National Accelerator Facility

World Data @ $Q^2 = 0.1 \text{ GeV}^2$

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

 $G_{E}^{s} = -0.013 \pm 0.028$ $G_{M}^{s} = +0.62 \pm 0.31$ $\pm 0.62 \ 2\sigma$ <u>Contours</u> $---- 1\sigma, 2\sigma$ ---- 68.3, 95.5% CL

Theories

- 1. Leinweber, et al. PRL **94** (05) 212001
- 2. Lyubovitskij, et al. PRC 66 (02) 055204
- Lewis, et al.
 PRD 67 (03) 013003
- 4. Silva, et al.

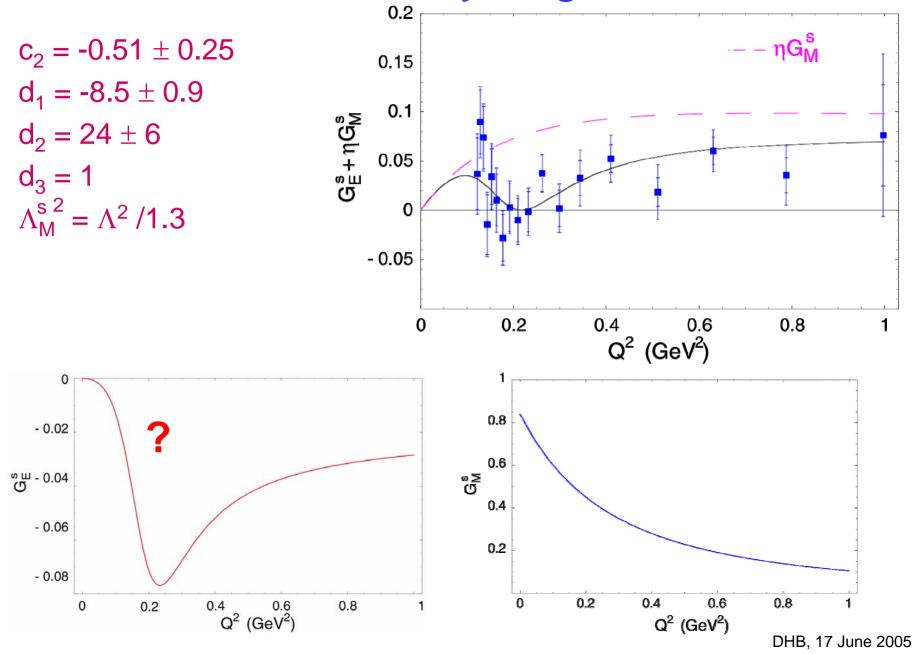
Simple Fits to World Hydrogen Data

• Fit

$$G_{E}^{s}(Q^{2}) + \eta(Q^{2}, E_{i})G_{M}^{s}(Q^{2}) = \frac{4\pi\alpha\sqrt{2}}{G_{F}Q^{2}}\frac{\varepsilon G_{E}^{p^{2}} + \tau G_{M}^{p^{2}}}{\varepsilon G_{E}^{p}(1+R_{V}^{(0)})}\left(A_{phys} - A_{NVS}(Q^{2}, E_{i})\right)$$

with simple forms for G_E^s , G_M^s

$$G_{E}^{s}(Q^{2}) = \frac{c_{2}Q^{4}}{1 + d_{1}Q^{2} + d_{2}Q^{4} + d_{3}Q^{6}} \quad \text{à la Kelly}$$


$$G_{M}^{s}(Q^{2}) = \frac{G_{M}^{s}(Q^{2} = 0)}{\left(1 + Q^{2}/\Lambda_{M}^{s}\right)^{2}}$$

with

 $G_M^s(Q^2 = 0) = 0.81$ from Q² = 0.1 GeV² plot, dipole ff

DHB, 17 June 2005

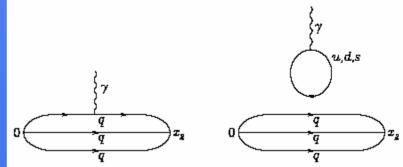
"Fit" to World Hydrogen Data

Significance & Comparison with Lattice QCD

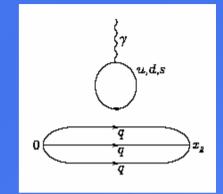
- Size and sign of the strange magnetic moment is astonishing!
- Experimental isoscalar nucleon moment is 0.88 μ_N c.f. this result which is (Beck) - 0.54 μ_N : i.e. - 60% !!
- Also remarkable versus lattice QCD which gives

+0.03 \pm 0.01 μ_{N} (Leinweber et al., PRL 94 (2005) 212001)

Sign would require violation of universality of


valence quark moments by $\sim 70\%$!

Thomas Jefferson National Accelerator Facility


Magnetic Moments within QCD

 $p = 2/3 u^p - 1/3 d^p + O_N$ $n = -1/3 u^p + 2/3 d^p + O_N$ $2p + n = u^p + 3 O_N$ (and $p + 2n = d^p + 3 O_N$) $\Sigma^{+} = 2/3 \mathbf{u}^{\Sigma} - 1/3 \mathbf{s}^{\Sigma} + \mathbf{O}_{\Sigma}$ $\Sigma^{-} = -1/3 \mathbf{u}^{\Sigma} - 1/3 \mathbf{s}^{\Sigma} + \mathbf{O}_{\Sigma}$ Σ^+ - $\Sigma^- = \mathbf{u}^{\Sigma}$ $O_{N} = 1/3 [2p + n - (u^{p} / u^{\Sigma}) (\Sigma^{+} - \Sigma^{-})]$ **HENCE:** Just these ratios from Lattice OCD $O_{N} = 1/3 [n + 2p - (u^{n} / u^{\Xi}) (\Xi^{0} - \Xi^{-})]$ OR Office of U.S. DEPARTMENT OF ENERGY

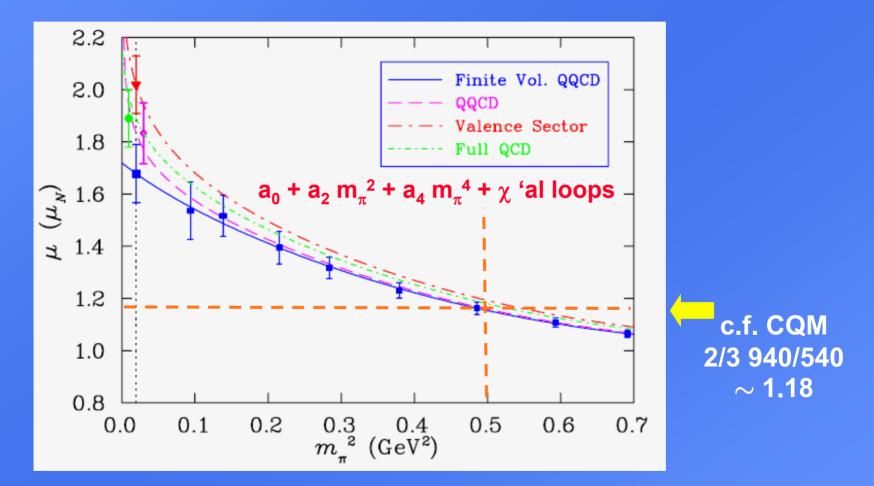
Constraint from Charge Symmetry

$$O_N = \frac{2}{3} {}^{\ell} G_M^u - \frac{1}{3} {}^{\ell} G_M^d - \frac{1}{3} {}^{\ell} G_M^s$$

= $\frac{1}{3} \left({}^{\ell} G_M^d - {}^{\ell} G_M^s \right) ,$
= $\frac{{}^{\ell} G_M^s}{3} \left(\frac{1 - {}^{\ell} R_d^s}{{}^{\ell} R_d^s} \right) ,$

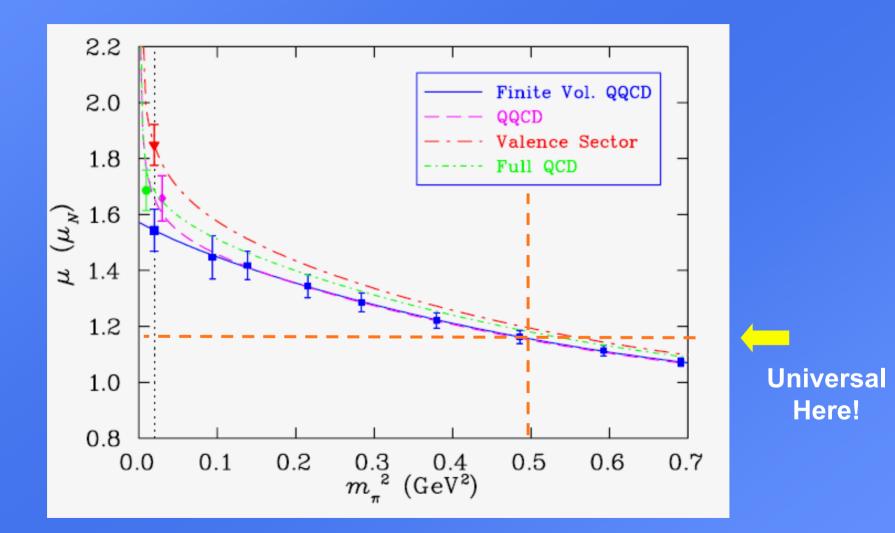
$$G_M^s = \left(\frac{{}^{\ell}R_d^s}{1-{}^{\ell}R_d^s}\right) \left[3.673 - \frac{u_p}{u_{\Sigma^+}}\left(3.618\right)\right]$$

$$G_M^s = \left(\frac{{}^{\ell}R_d^s}{1 - {}^{\ell}R_d^s}\right) \left[-1.033 - \frac{u_n}{u_{\Xi^0}} \left(-0.599\right)\right]$$

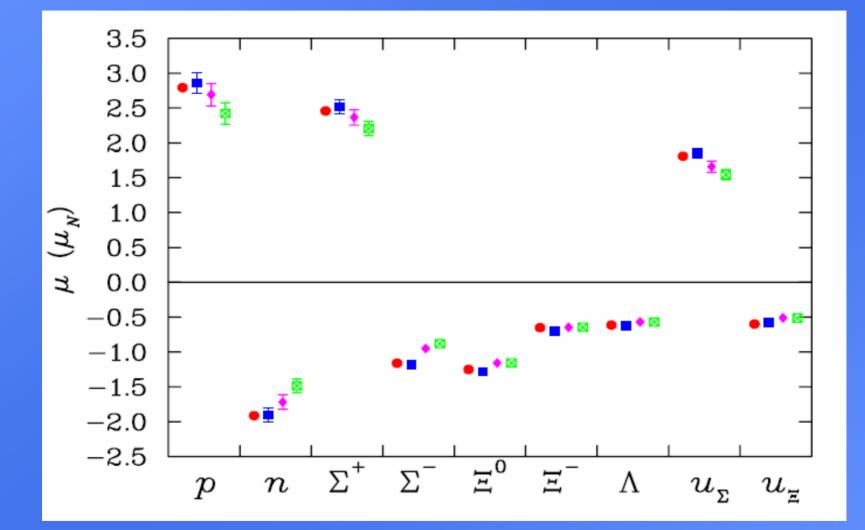

Leinweber and Thomas, Phys. Rev. D62 (2000) 07505.

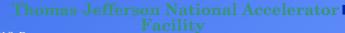
Thomas Jefferson National Accelerator Facility

u^p_{valence}: QQCD Data Corrected for Full QCD Chiral Coeff's

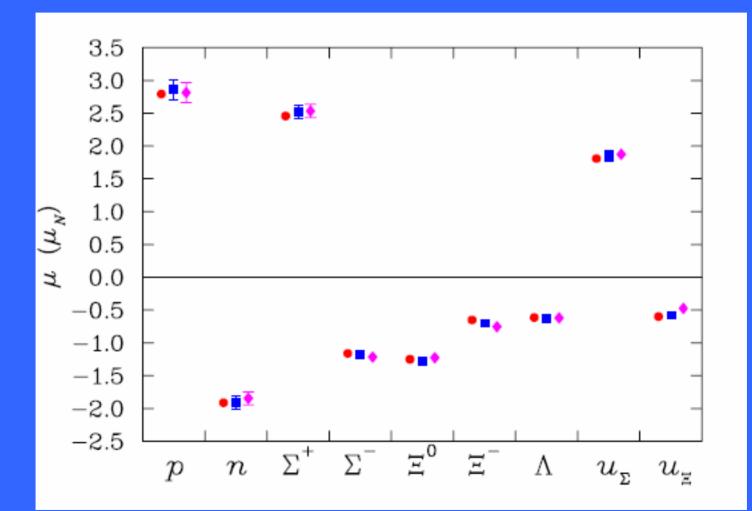

New lattice data from Zanotti et al. ; Chiral analysis Leinweber et al.

Thomas Jefferson National Accelerator Facility




Thomas Jefferson National Accelerator

Check: Octet Magnetic Moments

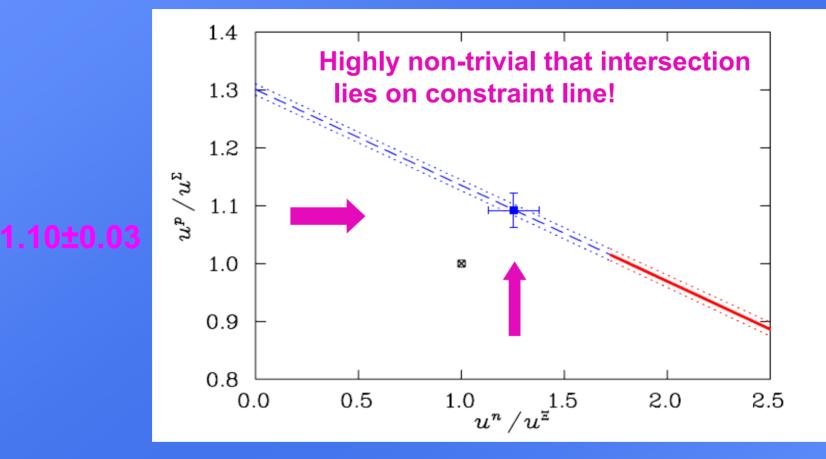


Leinweber et al., hep-lat/0406002

Convergence LNA to NLNA Again Excellent (Effect of Decuplet)

Thomas Jefferson National Accelerator Facility

State of the Art Magnetic Moments

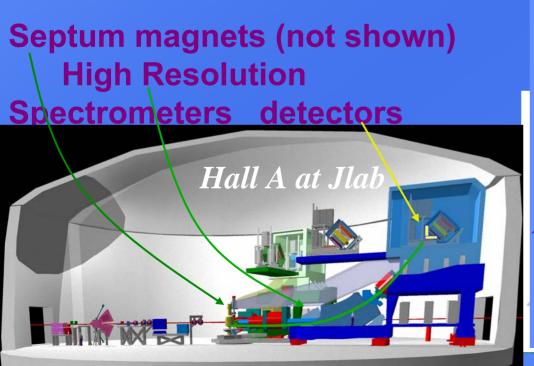

	QQCD	Valence	Full QCD	Expt.
р	2.69 (16)	2.94 (15)	2.86 (15)	2.79
n	-1.72 (10)	-1.83 (10)	-1.91 (10)	-1.91
Σ^+	2.37 (11)	2.61 (10)	2.52 (10)	2.46 (10)
Σ-	-0.95 (05)	-1.08 (05)	-1.17 (05)	-1.16 (03)
Λ	-0.57 (03)	-0.61 (03)	-0.63 (03)	-0.613 (4)
王 ⁰	-1.16 (04)	-1.26 (04)	-1.28 (04)	-1.25 (01)
Ξ-	-0.65 (02)	-0.68 (02)	-0.70 (02)	-0.651 (03)
u ^p	1.66 (08)	1.85 (07)	1.85 (07)	1.81 (06)
u≘	-0.51 (04)	-0.58 (04)	-0.58 (04)	-0.60 (01)

Thomas Jefferson National Accelerator Facility

Accurate Final Result for G_M^s

1.25±0.12

Yields : G_{M}^{s} = -0.046 ± 0.019 μ_{N}


Leinweber et al., (PRL June '05) hep-lat/0406002

Thomas Jefferson National Accelerator Facility

Parity Violating Studies on 'H and ⁴He *θ*_{lab} ~ 6° $Q^2 \sim 0.1 (GeV/c)^2$ 3 GeV beam in Hall A

target	A _{PV} G ^s = 0 (ppm)	Stat. Error (ppm)	Syst. Error (ppm)	sensitivity
¹ H	-1.6	0.08	0.04	δ(G ^s _E +0.08G ^s _M) = 0.010
⁴ He	+7.8	0.18	0.18	δ(G ^s _E) = 0.015

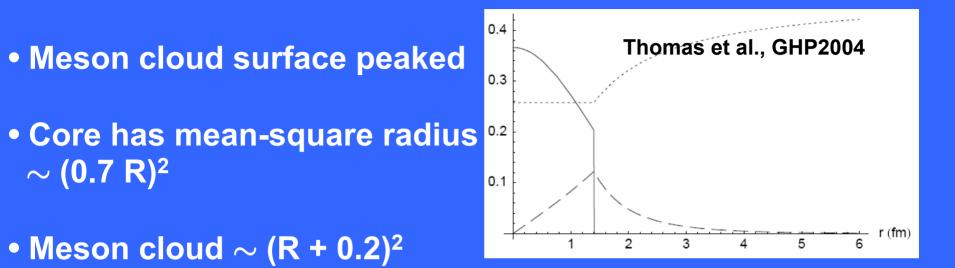
Brass-Quartz integrating detector

U.S. DEPARTMENT OF ENERGY

"Back of the Envelope" Estimates

- Nowhere that current quark masses enter dynamics
 always constituent quark masses
- Hence s-sbar pair costs 1.0-1.1 GeV plus KE
- K Λ costs 0.65 GeV plus KE (and coupling $\sim \pi$ N) (K- Σ much smaller \Rightarrow ignore)
- Lots of evidence that $P_{\pi\,N}\sim 20\% \Rightarrow P_{K\,\Lambda}\sim 5\%$
- $G_{M}{}^{s} \approx -3 \times P_{K \Lambda} \times$ [2/3 (+0.61 + 1/3) +1/3(-0.61 + 0)]

 \approx -0.067 μ_{N}

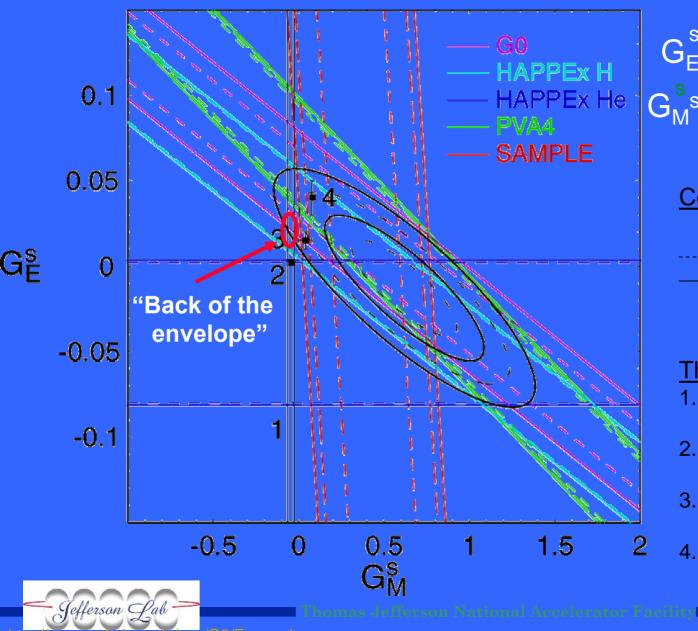

Remarkably close to lattice estimate!

Thomas Jefferson National Accelerator Facility

Strangeness Radius

• Hence: -3 < r²>_s ~ -3 ×(+ 1/3) $\mathsf{P}_{\mathsf{K}\,\Lambda}$ [- 0.49 R^2 + (R + 0.2)²]

 ϵ (-0.02, -0.04) fm² for R ϵ (0.8,1.0) fm


• Hence: G_{E}^{s} (0.1 GeV²) \sim (+0.01, +0.02)

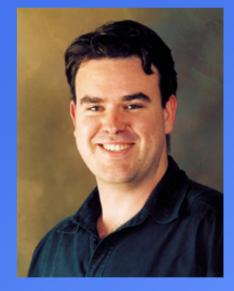
Thomas Jefferson National Accelerator Facility

World Data @ $Q^2 = 0.1 \text{ GeV}^2$

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

 $G_{E}^{s} = -0.013 \pm 0.028$ $G_{M}^{s} = +0.62 \pm 0.31$ $\pm 0.62 \ 2\sigma$ <u>Contours</u> $---- 1\sigma, 2\sigma$ $---- 68.3, 95.5\% \ CL$

Theories


- 1. Leinweber, et al. PRL **94** (05) 212001
- 2. Lyubovitskij, et al. PRC 66 (02) 055204
- Lewis, et al.
 PRD 67 (03) 013003
- 4. Silva, et al.

Special Mentions.....

Derek Leinweber

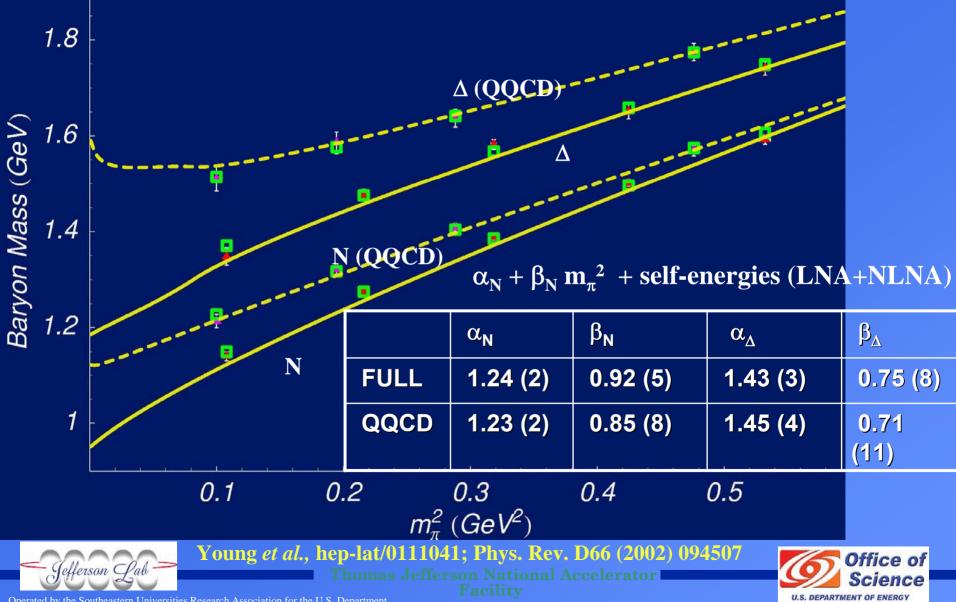
Ross Young

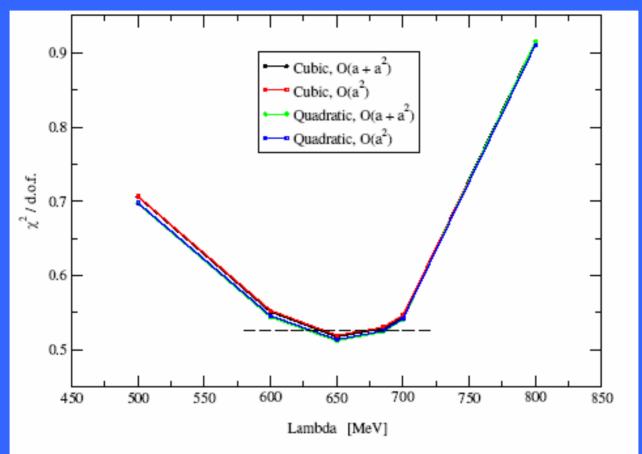
Stewart Wright

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility




Operated by the Southeastern Universities Research Association for the U.S. Department

Jefferson Lab

•Lattice data (from MILC Collaboration) : red triangles •Green boxes: fit evaluating σ 's on same finite grid as lattice •Lines are exact, continuum results

FRR Mass well determined by data

$$\sqrt{(M_V^{deg})^2 - \Sigma_{TOT}} = (a_0^{cont} + X_1 a + X_2 a^2) + a_2 (M_{PS}^{deg})^2 + a_4 (M_{PS}^{deg})^4 + a_6 (M_{PS}^{deg})^6$$

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility