Symmetries & the Search for Physics Beyond The Standard Model

Anthony W. Thomas 4th International Symposium on Symmetries in Subatomic Physics Tefferson Lab

Taipei : June 2nd 2009 Thomas Jefferson National Accelerator Facility

Outline

- Strangeness in the Nucleon
- Parity Violating Electron Scattering
 - testing strangeness
 - testing Electroweak extensions
- Dark matter searches
 - σ commutators from lattice QCD

Dedicated to Ernest Henley on his 85th birthday

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Merson

Testing Non-Perturbative QCD

• Strangeness contribution is a vacuum polarization effect, analogous to Lamb shift in QED

It is a fundamental test of non-perturbative QCD

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

ellerson C

Strange Quarks in QCD

There have been a number of major steps forward recently, both theory and experiment :

- Calculation of G_{E,M}^s (Q²) :
 - Direct: Kentucky (xQCD : K.-F. Liu)
 - Indirect: JLab-Adelaide
- Experimental determination of G_{E,M}^s (Q²)
 - G0 (Beise, CIPANP); Mainz PVA4 (arXiv:0903.2733); Happex and Bates

omas Jefferson National Accelerator Facility

- > Agreement between theory and experiment excellent
 - consistent global analysis valuable

Operated by Jefferson Science Associates for the U.S. Department of Energy

Merson

U.S. DEPARTMENT OF ENERGY

Accurate Final Result for G_M^s

1.25 0.12

U.S. DEPARTMENT OF ENERGY

Yields : $G_M^{s} = -0.046 \quad 0.019 \ \mu_N$

Leinweber et al., (PRL June '05) hep-lat/0406002

Thomas Jefferson National Accelerator Facility

Tellerson C

State of the Art Magnetic Moments

	QQCD	Valence	Full QCD	Expt.
р	2.69 (16)	2.94 (15)	2.86 (15)	2.79
n	-1.72 (10)	-1.83 (10)	-1.91 (10)	-1.91
Σ+	2.37 (11)	2.61 (10)	2.52 (10)	2.46 (10)
Σ-	-0.95 (05)	-1.08 (05)	-1.17 (05)	-1.16 (03)
Λ	-0.57 (03)	-0.61 (03)	-0.63 (03)	-0.613 (4)
Ξ0	-1.16 (04)	-1.26 (04)	-1.28 (04)	-1.25 (01)
Ξ-	-0.65 (02)	-0.68 (02)	-0.70 (02)	-0.651 (03)
u ^p	1.66 (08)	1.85 (07)	1.85 (07)	1.81 (06)
u ^E	-0.51 (04)	-0.58 (04)	-0.58 (04)	-0.60 (01)

Operated by Jefferson Science Associates for the U.S. Department of Energy

Jefferson C

January 2006: G_E^s by same technique

In this case only know Σ^- radius (and p and n)

 $2p + n = u^{p} + 3O_{N}$ $p + 2n = d^{p} + 3O_{N}$

 $< r^{2}_{s} = 0.000 \pm 0.006 \pm 0.007 \text{ fm}^{2}$; $0.002 \pm 0.004 \pm 0.004 \text{ fm}^{2}$

(c.f. using Σ^- : -0.007±0.004±0.007±0.021 fm²)

$$G_E^s(0.1 \,\mathrm{GeV}^2) = +0.001 \pm 0.004 \pm 0.004$$

(up to order Q⁴)

IS DEPARTMENT OF ENERG

Note consistency and level of precision!

Leinweber, Young et al., hep-lat/0601025: Jan 2006

Thomas Jefferson National Accelerator Facility

Tollerson (

Indirect lattice calculation at Q² = 0.23 GeV²

Wang et al. : arXiv:0807.0944 (PR C in press)

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Tellerson C

Direct Calculation of $G_M^{s}(Q^2) - K.-F.$ Liu et al.

Strangeness Magnetic Form Factors with 3 Quark Masses $(m_n = 0.6, 0.7, 0.8 \text{ GeV})$; T. Doi et al. (χ QCD) arXiV:0903.3232

$G_M^S(Q^2=0) = -0.017(25)(07) \mu_N$

c.f. -0.046 \pm 0.019 (Leinweber et al.) N.B. Expect increase of order 1.8 when light quark mass takes physical value with m_s fixed (Wang et al., hep-ph/0701082 :Phys Rev D75, 2008)

Thomas Jefferson Nation

Operated by Jefferson Science Associates for the U.S. Department of Energy

lefferson Lat

Moments of Strange Parton Distribution and Strangeness Magnetic Moment

- Hadronic Tensor in Euclidean Path-Integral Formalism
 <x>s and <x>utd (D.I.)
- $< \chi^2 >_{s}$
- Glue momentum fraction
- Strangeness Magnetic Moment

QCD Collaboration:

A. Alexandru, Y. Chen, T. Doi, S.J. Dong, T. Draper, I. Horvath, B. Joo, F. Lee, A. Li, K.F. Liu, N. Mathur, T. Streuer, H. Thacker, J.B. Zhang

PVA4 Mainz 2009: Q² = 0.22 GeV²

arXiv: 0903.2733v1

Global Analysis of PVES Data

From NSAC Long Range Plan

Office of

U.S. DEPARTMENT OF ENERGY

cience

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Gefferson C

Radiative Corrections as Standard Model Test

Thomas Jefferson National Accelerator Facility

Page 13 Office of Science

Operated by Jefferson Science Associates for the U.S. Department of Energy

Tellerson C

Analysis of PVES

Proton target

Use data to constrain the parameters of the electroweak theory

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Tellerson C

Extraction of Low Energy Coupling Constants C_{1u,1d}

- Precise measurement of the proton's weak charge in PVES
 - $Q_{\text{weak}}^p = -2(2C_{1u} + C_{1d})$ $Q^2 = 0.03 \,\text{GeV}^2, \ \theta = 8^\circ$
- At low energy and small scattering angle:

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

ellerson C

Use Global Fit to Extract Slope at 0° and Q² = 0

New update on C_{1q} couplings – Dec 2006

Effect of Including Theoretical Constraints?

- Seems natural given independent verification by xQCD noted above

With Best Constraints from Lattice QCD

No Significant Change in Conclusion

U.S. DEPARTMENT OF ENERGY

General Limits on Physics Beyond SM

$$\mathcal{L}_{\rm SM}^{\rm PV} = -\frac{G_F}{\sqrt{2}} \bar{e} \gamma_{\mu} \gamma_5 e \sum_q C_{1q}^{\rm SM} \bar{q} \gamma^{\mu} q$$
Erler et al., PRD68(2003)
$$\mathcal{L}_{\rm NP}^{\rm PV} = -\frac{g^2}{4\Lambda^2} \bar{e} \gamma_{\mu} \gamma_5 e \sum_q h_V^q \bar{q} \gamma^{\mu} q$$
Eull isospin coverage for limits on new physics!

Full isospin coverage for limits on new physics! $h_V^u = \cos \theta_h$ $h_V^d = \sin \theta_h$ Data sets limits on $\frac{g^2}{\Lambda^2}$

Thomas Jefferson National Accelerator Facility

Page 21 Office of Science

Operated by Jefferson Science Associates for the U.S. Department of Energy

Tellerson Pab

Raises Mass of New Z' to 0.9 TeV – from 0.4 TeV

Operated by Jefferson Science Associates for the U.S. Department of Energy

Jefferson G

Future Q_{weak} – IF in Agreement with SM

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Jefferson Pab

IF in accord with Standard Model...

Qweak constrains new physics to beyond 2 TeV

Thomas Jefferson National Accelerator Facility Page 24 Office of Science

Operated by Jefferson Science Associates for the U.S. Department of Energy

Jefferson C

Or... Discovery

Page 25

U.S. DEPARTMENT OF ENERGY

Final Remark on Dark Matter Searches

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Cellerson C

Hadronic Uncertainties in the Elastic Scattering of Supersymmetric Dark Matter

John Ellis,^{1,*} Keith A. Olive,^{2,†} and Christopher Savage^{2,‡}

```
CERN-PH-TH/2008-005
UMN-TH-2631/08
FTPI-MINN-08/02
```

We find that the spin-independent cross section may vary by almost an order of magnitude for 48 MeV $< \Sigma_{\pi N} < 80$ MeV, the ± 2 - σ range according to the uncertainties in Table I. This uncertainty is already impacting the interpretations of experimental searches for cold dark matter. Propagating the ± 2 - σ uncertainties in $\Delta_s^{(p)}$, the next most important parameter, we find a variation by a factor ~ 2 in the spin-dependent cross section. Since the spinindependent cross section may now be on the verge of detectability in certain models, and the uncertainty in the cross section is far greater, we appeal for a greater, dedicated effort to reduce the experimental uncertainty in the π -nucleon σ term $\Sigma_{\pi N}$. This quantity is not just an object of curiosity for those interested in the structure of the nucleon and nonperturbative strong-interaction effects: it may also be key to understanding new physics beyond the Standard Model.

$$\mathcal{L} = \alpha_{2i} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi \overline{q_{i}} \gamma_{\mu} \gamma^{5} q_{i} + \alpha_{3i} \bar{\chi} \chi \overline{q_{i}} q_{i} \sigma \text{ terms}$$

$$\mathbf{Neutralino} \ (0.3 \ \text{GeV} / \text{cc} : \text{WMAP})$$

$$\mathbf{Meutralino} \ (0.3 \ \text{GeV} / \text{cc} : \text{WMAP})$$

$$\mathbf{Meutralino} \ \mathbf{Meutralino} \ \mathbf{Meutralino}$$

Operated by Jefferson Science Associates for the U.S. Department of Energy

Tellerson C

Can now address this issue with lattice QCD data

- In fact study available data on whole octet as a function of m_{π} and m_{K}
- Data does not lie in "power counting region"
 hence use finite range regularization (FRR)
- FRR suppresses Goldstone boson loops when Compton wavelength is too small (m_{GB} > 0.4 GeV)

- see talk of R. Young

nomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Merson

LHPC Data

(Walker-Loud et al.. arXiv:0806.4549)

U.S. DEPARTMENT OF ENERGY

Summary of Results of Combined Fits (of 2008 LHPC & PACS-CS data)

			/		
B	Mass (GeV)	Exp	5.	$\bar{\sigma}_{Bl}$	$\bar{\sigma}_{Bs}$
N	0.945(24)(4)(3)	0.93	9	0.050(9)(1)(3)	0.033(16)(4)(2)
Λ	1.103(13)(9)(3)	1.11	6	0.028(4)(1)(2)	0.144(15)(10)(2)
Σ	1.182(11)(2)(6)	1.19	3	0.0212(27)(1)(17)	0.187(15)(3)(4)
Ξ	1.301(12)(9)(1)	1.31	3	0.0100(10)(0)(4)	0.244(15)(12)(2)

$$\bar{\sigma}_{Bq} = (m_q/M_B)\partial M_B/\partial m_q$$

Of particular interest:

Tellerson Pal

 $\sigma \text{ commutator well determined : } \sigma_{\pi N} = 47 \text{ (9) (1) (3) MeV}$ and strangeness sigma commutator <u>small</u> m_s ∂M_N/ ∂ m_s = 31 (15) (4) (2) MeV NOT several 100 MeV !

Profound Consequences for Dark Matter Searches and for dense matter – possible kaon condensation

Thomas Jefferson National Accelerator Facility

U.S. DEPARTMENT OF ENERGY

Summary

- Strange content of N small

 Less than 5% of µ^p and 2% of proton charge radius
- Theory agrees well but order of magnitude more accurate than state-of-the-art experiments

Thomas Jefferson National Accelerator Facility

 Major success of QCD : direct insight into "disconnected diagrams"

 analogue of Lamb shift

Operated by Jefferson Science Associates for the U.S. Department of Energy

ollerson (

Summary - 2

- With lattice scale set by heavy quark (non-chiral) physics, agreement with octet masses is good at the 1-2% level!
- Strangeness content (condensate) is roughly an order of magnitude smaller than naively assumed

omas Jefferson National Accelerator Facility

• Strangeness term usually dominates estimates of dark matter cross section - it should NOT!

Operated by Jefferson Science Associates for the U.S. Department of Energy

Merson

Summary - 3

•Precise parity violating electron scattering data, dominated by Jefferson Lab, also enables very accurate tests of Standard Model couplings C_{1u,1d}

•Data so far has raised the mass scale above which new physics is allowed from 0.4 to 0.9 GeV

•Future measurements in Q_{weak} experiment (Carlini, this meeting) will more than double this limit OR discover New Physics

Thanks especially to Ross Young and Roger Carlini

homas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

Merson

