Origin of the Nuclear EOS in Hadronic Physics and QCD

Anthony W. Thomas

XXX Symposium on Nuclear Physics - Cocoyoc: Jan 5th 2007

Thomas Jefferson National Accelerator Facility

Where to find more information

• Two major, recent papers:

- I. Guichon, Matevosyan, Sandulescu, Thomas, Nucl. Phys. A772 (2006) 1.
- II. Guichon and Thomas, Phys. Rev. Lett. 93 (2004) 132502

• Built on earlier work on QMC: e.g.

- III. Guichon, Phys. Lett. B200 (1988) 235
- IV. Guichon, Saito, Rodionov, Thomas, Nucl. Phys. A601 (1996) 349

• Major review of applications of QMC to many nuclear systems:

- V. Saito, Tsushima, Thomas,
 - Prog. Part. Nucl. Phys. 58 (2007) 1 (hep-ph/0506314)

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Association for the U.S. Department of Energy

lerson (

Model Independent Features of NN Force

- Intermediate Range attraction is Lorentz scalar-isoscalar (since 70's, dispersion relations, Paris potential...)
- Lorentz scalar force is strong!
- Short distance repulsion is Lorentz vector (not so model independent BUT lots of support)
- At high density MFA gets to be accurate
- Classical implementation is Walecka model $\implies m_{N}^{*}$ / $m_{N} \sim 0.5$ at ρ_{0}

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Association for the U.S. Department of Energy

lerson (

Relativity Matters in Dense Matter

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

S. DEPARTMENT

 $\rho(fm^{\text{-3}})$

0.8

• Non-relativistic expansion in powers of k_F unlikely to be successful.....

- BUT what is missing in Walecka model (QHD)?
 - π : but easily added and irrelevant in MFA
 - Effect of $m_N^* = m_N / 2$ on internal structure of nucleon; this is a huge external field!

Thomas Jefferson National Accelerator Facility

ellerson C

What happens if we put an atom in a strong electric field?

Jackson \Rightarrow

i.e. atom has a polarizability: its internal structure is rearranged in response to applied field

///'Iy in applied magnetic field (indeed, in super strong field -e.g. n-star surface atoms & molecules essentially linear!)

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Association for the U.S. Department of Energy

llerson C

Electric & Magnetic Polarizabilities of Nucleon are Measured

So what?

Atoms respond to external E and B fields

- Nucleons respond to external E and B fields
- It is clear that nucleons must respond to large scalar fields known to exist in-medium

• This leads to a mass shift that is non-linear in mean scalar field \Rightarrow <u>scalar polarizability</u>

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Association for the U.S. Department of Energy

lerson

Fundamental Question: "What is the Scalar Polarizability of the Nucleon?"

Nucleon response to a chiral invariant scalar field is then a nucleon property of great interest...

$$M^*(\vec{R}) = M - g_\sigma \sigma(\vec{R}) + \frac{d}{2} \left(g_\sigma \sigma(\vec{R})\right)^2$$

Non-linear dependence \equiv scalar polarizability d \approx 0.22 R in original QMC (MIT bag)

Indeed, in nuclear matter at mean-field level (e.g. QMC), this is the ONLY place the response of the internal structure of the nucleon enters.

CCELETATOR FACILITY Page 9 U.S. DEPARTI

Operated by Jefferson Science Association for the U.S. Department of Energy

allerson (

ORIGIN in QMC Model

$$[i\gamma^{\mu}\partial_{\mu} - (m_q - g_{\sigma}{}^q\bar{\sigma}) - \gamma^0 g_{\omega}{}^q\bar{\omega}]\psi = 0$$

 $\int_{Baq} dec{r} \overline{\psi}(ec{r}) \psi(ec{r})$ changes: **SELF-CONSISTE**

and hence mean scalar field changes

and hence quark wave function changes....

THIS PROVIDES A NATURAL SATURATION MECHANISM (VERY EFFICIENT BECAUSE QUARKS ARE ALMOST MASSLESS)

source is suppressed as mean scalar field increases (i.e. as density increases)

Operated by Jefferson Science Association for the U.S. Department of Energy

Source of σ

Cellerson Pal

Summary : Scalar Polarizability

 Can always rewrite non-linear coupling as linear coupling plus non-linear scalar self-coupling – likely physical origin of <u>non-linear versions of QHD</u>

omas Jefferson National Accelerator Facility

- In nuclear matter this is the only place the internal structure of the nucleon enters in MFA
- Consequence of polarizability in atomic physics is many-body forces:

$$\mathbf{V} = \mathbf{V}_{12} + \mathbf{V}_{23} + \mathbf{V}_{13} + \mathbf{V}_{123}$$

Operated by Jefferson Science Association for the U.S. Department of Energy

lerson

Linking QMC to Familiar Nuclear Theory

Since early 70's tremendous amount of work in nuclear theory is based upon effective forces

- Used for everything from nuclear astrophysics to collective excitations of nuclei
- Skyrme Force: Vautherin and Brink

In Paper I: Guichon and Thomas, Phys. Rev. Lett. 93, 132502 (2004)

we explicitly obtained effective force, 2- plus 3- body, of Skyrme type

- equivalent to QMC model (required expansion around σ = 0)

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Association for the U.S. Department of Energy

Herson (

Comparison Between Skyrme III and QMC

	QMC	QMC	Skili	QMC(N=3)
$m_{\sigma}(MeV)$	500	600		600
$t_0 (MeV fm^3)$	-1071	-1082	-1129	-1047
X ₀	0.89	0.59	0.45	0.61
$t_3(MeV fm^6)$	16620	14926	14000	12996
$M_{e\!f\!f}/M$.915	.814	.763	.821
$5t_2 - 9t_1 (MeV fm^5)$	-7622	-4330	-4030	-4036
$W_0(MeV fm^5)$	118	97	120	91

Three-body force, arising from scalar polarizability, agrees naturally with force (t₃) found phenomenologically - origin is same as that in atomic and molecular physics!

Thomas Jefferson National Accelerator Facility

Great Start: What's Next

Remove small σ field approximation

- Derive density-dependent forms
- Add the pion
- Derive $\Lambda N, \Sigma N, \Lambda \Lambda$... effective forces in-medium with no additional free parameters

omas Jefferson National Accelerator Facility

• Hence attack dense hadronic matter, n-stars, transition from NM to QM or SQM with more confidence

Operated by Jefferson Science Association for the U.S. Department of Energy

Lerson (

Physical Origin of <u>Density Dependent Force</u> of the Skyrme Type within the Quark Meson Coupling Model

P.A.M. Guichon¹, H.H. Matevosyan^{2,3}, N. Sandulescu^{1,4,5} and A.W. Thomas²

Paper II: N P A772 (2006) 1 (nucl-th/0603044)

No longer need to expand around $< \sigma > = 0$

$m_{\sigma}(\text{MeV})$	$t_0(\mathrm{fm}^2)$	$t_1(\mathrm{fm}^4)$	$t_2(\mathrm{fm}^4)$	$t_3({\rm fm}^{5/2})$	x_0	$W_0(\mathrm{fm}^4)$	Deviation
600	-12.72	2.64	-1.12	74.25	0.17	0.6	33%
650	-12.48	2.21	-0.77	71.73	0.13	0.56	18%
700	-12.31	1.88	-0.49	69.8	0.1	0.53	18%
750	-12.18	1.62	-0.28	68.28	0.08	0.51	38%
$\rm SkM^*$	-13.4	2.08	-0.68	79	0.09	0.66	0%

Table 2: Comparison of the SkM^{*} parameters with the QMC predictions for several values of m_{σ}

BUT density functional not exactly the same – QMC yields <u>rational forms</u>

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Association for the U.S. Department of Energy

Cellerson Pat

Check directly vs data

• That is, apply new effective force directly to calculate nuclear properties using Hartree-Fock (as for usual well known force)

	E_B (MeV, exp)	E_B (MeV, QMC)	r_c (fm, exp)	r_c (fm, QMC)
^{16}O	7.976	7.618	2.73	2.702
^{40}Ca	8.551	8.213	3.485	3.415
^{48}Ca	8.666	8.343	3.484	3.468
^{208}Pb	7.867	7.515	5.5	5.42

• Where analytic form of (e.g. $H_0 + H_3$) piece of energy functional derived from QMC is:

$$\mathcal{H}_{0} + \mathcal{H}_{3} = \rho^{2} \left[\frac{-3 \, G_{\rho}}{32} + \frac{G_{\sigma}}{8 \, (1 + d \, \rho \, G_{\sigma})^{3}} - \frac{G_{\sigma}}{2 \, (1 + d \, \rho \, G_{\sigma})} + \frac{3 \, G_{\omega}}{8} \right] + (\rho_{n} - \rho_{p})^{2} \left[\frac{5 \, G_{\rho}}{32} + \frac{G_{\sigma}}{8 \, (1 + d \, \rho \, G_{\sigma})^{3}} - \frac{G_{\omega}}{8} \right],$$

Thomas Jefferson National Accelerator Facility

U.S. DEPARTMENT OF

Check directly vs data

• That is, apply new effective force directly to calculate nuclear properties using Hartree-Fock (as for usual well known force)

	E_B (MeV, exp)	E_B (MeV, QMC)	r_c (fm, exp)	r_c (fm, QMC)
^{16}O	7.976	7.618	2.73	2.702
^{40}Ca	8.551 ~ 4	8.213	3.485 ~	% 3.415
^{48}Ca	8.666	8.343	3.484	3.468
^{208}Pb	7.867	7.515	5.5	5.42

• Where analytic form of (e.g. $H_0 + H_3$) piece of energy functional derived from QMC is:

$$\mathcal{H}_{0} + \mathcal{H}_{3} = \rho^{2} \left[\frac{-3 G_{\rho}}{32} + \frac{G_{\sigma}}{8 (1 + Q_{\rho} G_{\sigma})^{3}} - \frac{G_{\sigma}}{2 (1 + Q_{\rho} G_{\sigma})} + \frac{3 G_{\omega}}{8} \right] + \frac{1}{8 (1 + Q_{\rho} G_{\sigma})^{3}} - \frac{G_{\omega}}{2 (1 + Q_{\rho} G_{\sigma})} + \frac{1}{8 (1 + Q_{\rho} G_{\sigma})^{3}} - \frac{G_{\omega}}{8} \right],$$
highlights $(\rho_{n} - \rho_{p})^{2} \left[\frac{5 G_{\rho}}{32} + \frac{G_{\sigma}}{8 (1 + Q_{\rho} G_{\sigma})^{3}} - \frac{G_{\omega}}{8} \right],$
Scalar polarizability Thomas Jefferson National Accelerator Facility (1 - 2) (1 -

Check directly vs data

• That is, apply new effective force directly to calculate nuclear properties using Hartree-Fock (as for usual well known force) – for example:

	E_B (MeV, exp)	E_B (MeV, QMC)	r_c (fm, exp)	r_c (fm, QMC)
^{16}O	7.976	7.618	2.73	2.702
^{40}Ca	8.551	8.213	3.485	3.415
^{48}Ca	8.666	8.343	3.484	3.468
^{208}Pb	7.867	7.515	5.5	5.42

• In comparison with the SkM force:

$$\mathcal{H}_0 + \mathcal{H}_3 = \frac{\rho^{\frac{1}{6}} t_3 \left(2 \rho^2 - \rho_n^2 - \rho_p^2\right)}{24} + \frac{t_0 \left(\rho^2 \left(2 + x_0\right) - \left(1 + 2 x_0\right) \left(\rho_n^2 + \rho_p^2\right)\right)}{4}$$

and full energy functional in both cases is:

$$< H(\vec{r}) >= \rho M + \frac{\tau}{2M} + \mathcal{H}_0 + \mathcal{H}_3 + \mathcal{H}_{eff} + \mathcal{H}_{fin} + \mathcal{H}_{so}$$

Thomas Jefferson National Accelerator Facility

Excellent Agreement with Sly4 for Charge Distributions

Neutron Densities vs Sly4 – also excellent

Spin-Orbit Splitting

	Neutrons	Neutrons	Protons	Protons
	(Expt)	(QMC)	(Expt)	(QMC)
¹⁶ O	6.10	6.01	6.3	5.9
1p _{1/2} -1p _{3/2}				
⁴⁰ Ca	6.15	6.41	6.0	6.2
1d _{3/2} -1d _{5/2}				
⁴⁸ Ca	6.05	5.64	6.06	5.59
1d _{3/2} -1d _{5/2}	(Sly4)		(Sly4)	
²⁰⁸ Pb	2.15	2.04	1.87	1.74
2d _{3/2} -2d _{5/2}	(Sly4)		(Sly4)	

Agreement generally very satisfactory – NO parameter adjusted to fit

Thomas Jefferson National Accelerator Facility

Finally: Apply to Shell Structure as N – Z ↓

- Use Hartree Fock Bogoliubov calculation
- Calculated variation of two-neutron removal energy at N = 28 as Z varies from Z = 32 (proton drip-line region) to Z = 18 (neutron drip-line region)
- S_{2n} changes by 8 MeV at Z=32 S_{2n} changes by 2–3 MeV at Z = 18
- This strong shell quenching is very similar to Skyrme – HFB calculations of Chabanat et al., Nucl. Phys. A635 (1998) 231
- 2n drip lines appear at about N = 60 for Ni and N = 82 for Zr
 (/// to predictions for Sly4 c.f. Chabanat et al.)
 (/// to predictions for Sly4 c.f. Chabanat et al.)
 (/// to predictions for Sly4 c.f. Chabanat et al.)

U.S. DEPARTMENT O

Neutron Star Structure is a Fascinating Puzzle

Thomas Jefferson National Accelerator Facility Page 23

- Hyperons enter at just 2-3 ρ₀
- Hence need effective Σ -N and Λ -N forces in this density region!
- •Hypernuclear data is important input (J-PARC, FAIR, JLab)

ρ_i/ρ_B

U.S. DEPARTMENT OF ENERGY

Latest QMC: Includes Medium Modification of Hyperfine Interaction

N - Δ and Σ - Λ splitting arise from one-gluon-exchange in MIT Bag Model : as $\sigma \uparrow$ so does this splitting...

Difference of Sigma and Lambda effective mass

Consequence: Σ hypernuclei unbound/weakly bound

Guichon, Stone, Thomas, Tsushima: to appear

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Association for the U.S. Department of Energy

ellerson C

Consequences for Neutron Star

New QMC model, fully relativistic, Hartree-Fock treatment

Stone, Guichon, Matevosyan, Thomas, nucl-th/0611030

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

Consequences for Neutron Star

New QMC model, fully relativistic, Hartree-Fock treatment

U.S. DEPARTMENT OF ENERGY

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

Recently Developed Covariant Model Built on the Same Physical Ideas

- Use NJL model (χ'al symmetry)
- Ensure confinement through proper time regularization (following the Tübingen group)
- Self-consistently solve Faddeev Eqn. in mean scalar field
- This solves chiral collapse problem common for NJL (because of scalar polarizability again)
- Can test against experiment
 - e.g. spin-dependent EMC effect
- Also apply same model to NM, NQM and SQM hence n-star

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Association for the U.S. Department of Energy

Cellerson C

Covariant Quark Model for Nuclear Structure

- Basic Model:
- •Bentz & Thomas, Nucl. Phys. A696 (2001) 138
- Bentz, Horikawa, Ishii, Thomas, Nucl. Phys. A720 (2003) 95
- Applications to DIS:
- Cloet, Bentz, Thomas, Phys. Rev. Lett. 95 (2005) 052302
- Applications to neutron stars including SQM:
- Lawley, Bentz, Thomas, Phys. Lett. B632 (2006) 495
- Lawley, Bentz, Thomas, J. Phys. G32 (2006) 667

Operated by Jefferson Science Association for the U.S. Department of Energy

ellerson (

The EMC Effect: Nuclear PDFs

- Observation stunned and electrified the HEP and Nuclear communities 20 years ago
- Nearly 1,000 papers have been generated.....
- What is it that alters the quark momentum in the nucleus?

$g_1(A)$ – "Polarized EMC Effect"

- Calculations described here \Rightarrow larger effect for polarized structure than unpolarized: mean scalar field modifies lower components of the confined quark's Dirac wave function
- Spin-dependent parton distribution functions for nuclei <u>unmeasured</u>

Recent Calculations for Finite Nuclei

Spin dependent EMC effect TWICE as large as unpolarized

FIG. 7: The EMC and polarized EMC effect in ¹¹B. The empirical data is from Ref. [31].

Cloet, Bentz, Thomas, Phys. Lett. B642 (2006) 210 (nucl-th/0605061)

Operated by Jefferson Science Association for the U.S. Department of Energy

ellerson of

EOS of Dense Matter – n Star Properties

Naturally leads to low mass, hybrid n stars with masses \sim independent of the central density

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Association for the U.S. Department of Energy

ellerson C

EOS of Dense Matter – n Star Properties

N.B. Hyperons in NM phase would tend to raise transition density a little - still need to include these....

Operated by Jefferson Science Association for the U.S. Department of Energy

ellerson C

Summary-1

- For dense matter relativity matters
- Intermediate attraction in NN force is STRONG scalar
- This modifies the intrinsic structure of the bound nucleon ⇒ profound change in shell model what occupies shell model states are NOT free nucleons
- Change of intrinsic structure \equiv "scalar polarizability"
- This is a natural source of three-body force clear physical interpretation

• Scalar polarizability also lowers mean scalar field strength - $M_N^{\,*} \sim$ 0.8 M_N rather than 0.5 M_N in QHD

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Association for the U.S. Department of Energy

Gellerson Pab

Summary -2

• Derived, density-dependent effective force gives results remarkably close to SkM and Sly4 for finite nuclei – with MANY less parameters

- Encourage community to use it...
- Same model also yields effective, density dependent Λ N, Σ N, Ξ N forces (not yet published)
- Availability of realistic, density dependent Hyperon-N forces is essential for ρ > 2-3 ρ_0
- Covariant version can be tested experimentally Jlab

• Already interesting results for NM, NQM, SQM in n stars

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Association for the U.S. Department of Energy

Gellerson Par

Special Mentions.....

Thomas Jefferson National Accelerator Facility

Phases of Dense Matter : NM (\rightarrow NQM) \rightarrow SQM

Finite Hypernuclei with New QMC

	$^{16}_{\Lambda}$ O (Expt.)	$^{17}_{\Lambda}{ m O}$	$^{17}_{\Sigma^{-}}\mathrm{O}$	$^{17}_{\Sigma^0}\mathrm{O}$	$^{17}_{\Sigma^+}\mathrm{O}$	$^{17}_{\Xi^-}\mathrm{O}$	$^{17}_{\Xi^0}\mathrm{O}$
$1s_{1/2}$	-12.5	-16.4	-6.3	-1.4		-11.2	-5.2
$1p_{3/2}$		-6.4				-3.7	
$1p_{1/2}$	-2.5(1p)	-6.2				-3.9	
	$^{40}_{\Lambda}$ Ca (Expt.)	$^{41}_{\Lambda}\mathrm{Ca}$	$^{41}_{\Sigma^{-}}$ Ca	$^{41}_{\Sigma^0}\mathrm{Ca}$	$^{41}_{\Sigma^+}$ Ca	${}^{41}_{\Xi^-}$ Ca	${}^{41}_{\Xi^0}\mathrm{Ca}$
$1s_{1/2}$	-20.0	-21.1	-2.2	-2.3		17.0	0 7
		<u> </u>	-2.2	-2.0		-17.9	-8.7
$1p_{3/2}$		-13.8	-7.4	-2.5		-17.9 -12.0	-8.7 -3.7
$\frac{1p_{3/2}}{1p_{1/2}}$	-12.0 (1p)	-13.8 -13.7	-7.4 -6.6			-17.9 -12.0 -12.1	-8.7 -3.7 -3.9
$\begin{array}{c} 1p_{3/2} \\ 1p_{1/2} \\ 1d_{5/2} \end{array}$	$-12.0 \ (1p)$	-13.8 -13.7 -5.7	-7.4 -6.6 -1.1	-2.5 		-17.9 -12.0 -12.1 -5.8	-8.7 -3.7 -3.9
$\begin{array}{c} 1p_{3/2} \\ 1p_{1/2} \\ 1d_{5/2} \\ 2s_{1/2} \end{array}$	-12.0 (1p)	-13.8 -13.7 -5.7 -3.3	-7.4 -6.6 -1.1 -0.9	-2.5 		-17.9 -12.0 -12.1 -5.8 -5.3	-8.7 -3.7 -3.9

- Relativistic Hartree only: Λ still well described
- Σ unbound or barely bound this is a big improvement!

Guichon, Matevosyan, Thomas, Tsushima, to appear

Thomas Jefferson National Accelerator Facility

U.S. DEPARTMENT OF

ellerson C

Quark Level Description of Finite Nuclei

• MAJOR CONCEPTUAL CHANGE:

What occupies shell model orbits are nucleon-like quasi-particles

- Have: <u>new mass</u>, M_N^{*}; <u>new form factors</u>, etc.
- EXPERIMENTAL EVIDENCE?
- First have to ask the question!
- Changes are subtle...

Lu et al., Phys. Lett. B417 (1998) 217

Thomas Jefferson National Accelerator Facility

Experimental Test of QMC at Mainz & JLab*

Capacity to measure polarization in coincidence:

 σ_{T} / $\sigma_{L} \sim G_{\text{E}}/G_{\text{M}}$: Compare ratio in ⁴He and in free space

S. Dieterich et al., Phys. Lett. B500 (2001) 47; and JLab report 2002

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Association for the U.S. Department of Energy

ellerson C

Modification of the proton form factors in-medium

Thomas Jefferson National Accelerator Facility

U.S. DEPARTMENT OF ENERGY

Can we Measure Scalar Polarizability in Lattice QCD ?

- IF we can, then in a real sense we would be linking nuclear structure to QCD itself, because scalar polarizability is sufficient in simplest, relativistic mean field theory to produce saturation
- Initial ideas on this published recently: the trick is to apply a <u>chiral invariant</u> scalar field

18th Nishinomiya Symposium: nucl-th/0411014 Prog. Theor. Phys.

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Association for the U.S. Department of Energy

allerson C

Lattice data (from MILC Collaboration) : red triangles
Green boxes: fit evaluating σ's on same finite grid as lattice
Lines are exact, continuum results

Operated by the Southeastern Universities Research Association for the U.S. Department

Variation of M_N under Chiral Invariant Scalar Field

i.e. Change m_q BUT <u>not</u> mass of pionic fluctuations

BUT study of chiral extrapolation of M_N and M_Δ (in QQCD and full QCD) can do this now !

$$\mathbf{M}_{N}^{*} = \mathbf{a}_{0} + \mathbf{a}_{2} \mathbf{m}_{\pi}^{2} + \mathbf{a}_{4} \mathbf{m}_{\pi}^{4} + \text{self-energy}(\mathbf{m}_{\pi}^{\text{phys}}, \Lambda)$$

 $\chi \, PT \Rightarrow m_{\pi}^{\ 2} \approx 4 \; m_q^{\ } + 20 \; m_q^{\ 2}\,, \quad \text{and in mean field } m_q^{\ } \rightarrow m_q^{\ } - g_\sigma^{\ q} \; \sigma$

HENCE: $M_N^* = M_N - (4 a_2 g_\sigma^q) \sigma + (20 a_2 + 16 a_4) g_\sigma^{q 2} \sigma^2$ $\approx M_N - g_\sigma (1 - g_\sigma \sigma) \sigma$

Coefficient ~ unity if units GeV \Rightarrow 10-20% \Downarrow at ρ_0 ... as in QMC!

Thomas Jefferson National Accelerator Facility

U.S. DEPARTMENT OF

Sefferson Pab

