Low-energy electroweak processes in the few nucleons in χEFT

- General considerations
- EM currents up to one loop
- A (sensitive) test case: radiative captures in A=3 and 4 systems
- Nuclear theory at 1%: μ -capture in d and ³He
- Summary and outlook

In collaboration with:

L. Girlanda L. Marcucci S. Pastore M. Viviani

A. Kievsky M. Piarulli

References:

Pastore *et al.*, PRC**80**, 034004 (2009); Girlanda *et al.*, PRL**105**, 232502 (2010); Pastore *et al.*, PRC**84**, 024001 (2011); Marcucci *et al.*, arXiv:1109.5563

Nuclear $\chi {\rm EFT}$ approach

Weinberg, PLB251, 288 (1990); NPB363, 3 (1991); PLB295, 114 (1992)

- χ EFT exploits the χ -symmetry exhibited by QCD to restrict the form of π interactions with other π 's, and with N's, Δ 's, ...
- The pion couples by powers of its momentum Q, and \mathcal{L}_{eff} can be systematically expanded in powers of Q/Λ_{χ} ($\Lambda_{\chi} \simeq 1 \text{ GeV}$)

$$\mathcal{L}_{\rm eff} = \mathcal{L}^{(0)} + \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \dots$$

- χ EFT allows for a perturbative treatment in terms of a Q-as opposed to a coupling constant–expansion
- The unknown coefficients in this expansion—the LEC's—are fixed by comparison with experimental data
- Nuclear χEFT provides a practical calculational scheme, capable (in principle) of systematic improvement

Work in nuclear χEFT : a partial listing

Since Weinberg's papers (1990–92), nuclear χ EFT has developed into an intense field of research. A very incomplete list:

- *NN* and *NNN* potentials:
 - van Kolck et al. (1994–96)
 - Friar et al. (1996–04)
 - Kaiser, Weise *et al.* (1997–98)
 - Glöckle, Epelbaum, Meissner et al. (1998–2005)
 - Entem and Machleidt (2003, 2011)
- Currents and nuclear electroweak properties:
 - Rho, Park et al. (1996–2009), hybrid studies in A=2–4
 - Meissner et al. (2001), Kölling et al. (2009–2011)
 - Phillips (2003), deuteron static properties and f.f.'s

<u>Formalism</u>

• Time-ordered perturbation theory (TOPT):

$$\langle f \mid T \mid i \rangle = \langle f \mid H_1 \sum_{n=1}^{\infty} \left(\frac{1}{E_i - H_0 + i\eta} H_1 \right)^{n-1} \mid i \rangle$$

• A contribution with N interaction vertices and L loops scales as

 α_i = number of derivatives (momenta) and β_i = number of π 's at each vertex N_K = number of energy denominators with <u>only</u> nucleon kinetic energies (Q^2)

• Each of the $N - N_K - 1$ energy denominators expanded as

$$\frac{1}{E_i - E_I - \omega_{\pi}} = -\frac{1}{\omega_{\pi}} \left[1 + \frac{E_i - E_I}{\omega_{\pi}} + \frac{(E_i - E_I)^2}{\omega_{\pi}^2} + \dots \right]$$

• Power counting:

$$T = T^{LO} + T^{NLO} + T^{N^2LO} + \dots$$
, and $T^{N^nLO} \sim (Q/\Lambda_{\chi})^n T^{LO}$

From amplitudes to potentials

• Derive v such that

$$v + v G_0 v + v G_0 v G_0 v + \dots$$
 $G_0 = 1/(E_i - E_I + i \eta)$

leads to T-matrix order by order in the power counting

• Assume

$$v = v^{(0)} + v^{(1)} + v^{(2)} + \dots \qquad v^{(n)} \sim Q^n$$

• Determine $v^{(n)}$ from

$$\begin{aligned} v^{(0)} &= T^{(0)} \\ v^{(1)} &= T^{(1)} - \left[v^{(0)} G_0 v^{(0)} \right] \\ v^{(2)} &= T^{(2)} - \left[v^{(0)} G_0 v^{(0)} G_0 v^{(0)} \right] - \left[v^{(1)} G_0 v^{(0)} + v^{(0)} G_0 v^{(1)} \right] \\ v^{(3)} &= T^{(3)} - \left[v^{(0)} G_0 v^{(0)} G_0 v^{(0)} G_0 v^{(0)} \right] - \left[v^{(1)} G_0 v^{(0)} G_0 v^{(0)} + \text{permutations} \right] \\ &- \left[v^{(2)} G_0 v^{(0)} + v^{(0)} G_0 v^{(2)} \right] \end{aligned}$$

where

$$v^{(m)} G_0 v^{(n)} \sim Q^{m+n+1}$$

• $v^{(0)} = T^{(0)}$ consists of (static) OPE and contact terms

• $v^{(1)} = T^{(1)} - \left[v^{(0)} G_0 v^{(0)}\right]$ vanishes

Including EM interactions

• In the presence of EM interactions (treated in first order)

$$T_{\gamma} = T_{\gamma}^{(-3)} + T_{\gamma}^{(-2)} + T_{\gamma}^{(-1)} + \dots \qquad T_{\gamma}^{(n)} \sim e Q^{n}$$

• For $v_{\gamma} = A^0 \rho - \mathbf{A} \cdot \mathbf{j}$ to match T_{γ} order by order

$$v_{\gamma}^{(-3)} = T_{\gamma}^{(-3)}$$
$$v_{\gamma}^{(-2)} = T_{\gamma}^{(-2)} - \left[v_{\gamma}^{(-3)} G_0 v^{(0)} + v^{(0)} G_0 v_{\gamma}^{(-3)} \right]$$

and up to $n = 1 \ (e Q)$

$$\begin{aligned} v_{\gamma}^{(1)} &= T_{\gamma}^{(1)} - \left[v_{\gamma}^{(-3)} G_0 v^{(0)} G_0 v^{(0)} G_0 v^{(0)} G_0 v^{(0)} + \text{permutations} \right] \\ &- \left[v_{\gamma}^{(-2)} G_0 v^{(0)} G_0 v^{(0)} G_0 v^{(0)} + \text{permutations} \right] \\ &- \left[v_{\gamma}^{(-1)} G_0 v^{(0)} G_0 v^{(0)} + \text{permutations} \right] - \left[v_{\gamma}^{(0)} G_0 v^{(0)} + v^{(0)} G_0 v_{\gamma}^{(0)} \right] \\ &- \left[v_{\gamma}^{(-3)} G_0 v^{(2)} G_0 v^{(0)} + \text{permutations} \right] - \left[v_{\gamma}^{(-3)} G_0 v^{(3)} + v^{(3)} G_0 v_{\gamma}^{(-3)} \right] \end{aligned}$$

Recent developments based on these methods^{*}

• NN potentials at order Q^2

- EM charge and current operators up to one loop (eQ)
- Form of charge operators at $e Q^0$ and $e Q^1$ depends on non-static corrections to OPE and TPE potentials
- While non unique, these non-static corrections to potentials and charge operators are unitarily equivalent[†]
- After (perturbative) renormalization, resulting operators still need to be regularized: $C_{\Lambda}(k) = e^{-(k/\Lambda)^4}$

*Pastore *et al.* PRC**80**, 034004 (2009); PRC**84**, 024001 (2011)

[†]Friar, Ann. Phys. **104**, 380 (1977) for similar considerations in the OPE sector

- These depend on the proton and neutron μ 's ($\mu_p = 2.793 \,\mu_N$ and $\mu_n = -1.913 \,\mu_N$), g_A , and F_{π}
- One-loop corrections to one-body current are absorbed into μ_N and $\langle r_N^2 \rangle$

$N^{3}LO(eQ)$ corrections

• One-loop corrections:

• Tree-level current with one $e Q^2$ vertex from $\mathcal{L}_{\gamma \pi N}$ of Fettes etal. (1998), involving 3 LEC's (~ $\gamma N \Delta$ and $\gamma \rho \pi$ currents) :

• Contact currents

from i) minimal substitution in the interactions involving ∂N (7 LEC's determined from strong-interaction sector) and ii) non-minimal couplings (2 LEC's)

<u>EM observables at N^3LO </u>

- Pion loop corrections and (minimal) contact terms known
- Five LEC's: d^S , d_1^V , and d_2^V could be determined by pion photo-production data on the nucleon

 $d^{\mathbf{S}}, d_1^{\mathbf{V}}, d_2^{\mathbf{V}} \qquad c^{\mathbf{S}}, c^{\mathbf{V}}$

- $d_2^V/d_1^V = 1/4$ assuming Δ -resonance saturation
- Three-body currents at N³LO vanish:

Fitted LEC values

- LEC's—in units of Λ —corresponding to $\Lambda = 500-700$ MeV for AV18/UIX (N3LO/N2LO)
- Isoscalar d^S (c^S) and isovector d_1^V (c^V) associated with higher-order $\gamma \pi N$ (contact) currents

Λ	$\Lambda^2 d^S \times 10^2$	$\Lambda^4 c^S$	$\Lambda^2 d_1^V$	$\Lambda^4 c^V$
500	-8.85(-0.225)	-3.18(-2.38)	5.18(5.82)	-11.3 (-11.4)
600	-2.90 (9.20)	-7.10(-5.30)	6.55(6.85)	-12.9(-23.3)
700	6.64~(20.4)	-13.2 (-9.83)	8.24 (8.27)	$-1.70 \ (-46.2)$

The nd and n^{3} He radiative captures

• Suppressed M1 processes:

	$\sigma_{\mathrm{exp}}(\mathrm{mb})$
${}^{1}\mathrm{H}(n,\gamma){}^{2}\mathrm{H}$	334.2(5)
$^{2}\mathrm{H}(n,\gamma)^{3}\mathrm{H}$	0.508(15)
${}^{3}\mathrm{He}(n,\gamma){}^{4}\mathrm{He}$	0.055(3)

- The ³H and ⁴He bound states are approximate eigenstates of the one-body *M*1 operator, *e.g.* $\hat{\mu}(IA) |^{3}H\rangle \simeq \mu_{p} |^{3}H\rangle$ and $\langle nd | \hat{\mu}(IA) |^{3}H\rangle \simeq 0$ by orthogonality
- A=3 and 4 radiative (and weak) captures very sensitive to
 i) small components in the w.f.'s and ii) many-body terms in the electro(weak) currents (80-90% of cross section!)

Wave functions: recent progress

- 3 and 4 bound-state w.f.'s and 2+1 continuum routine by now
- Challenges with 3+1 continuum:
 - 1. Coupled-channel nature of scattering problem: n-³He and p-³H channels both open
 - 2. Peculiarities of ⁴He spectrum (see below): hard to obtain numerically converged solutions

• Major effort by several groups^{*}: both singlet and triplet n-³He scattering lengths in good agreement with data

^{*}Deltuva and Fonseca (2007); Lazauskas (2009); Viviani *et al.* (2010)

	Triplet scattering length a_1 (fm))
Method	AV18	AV18/UIX
HH	3.56 - i 0.0077	3.39 - i 0.0059
RGM	3.45 - i 0.0066	3.31 - i 0.0051
FY	3.43 - i 0.0082	3.23 - i 0.0054
AGS	3.51 - i 0.0074	
R-matrix	3.29 - i 0.0012	
EXP	3.28(5) - i0.001(2)	
EXP	3.36(1)	
EXP	3.48(2)	

Singlet scattering length a_0 (harder to calculate!) also in good agreement with experiment

<u><i>n</i>-d</u> radiative capture cross section [*] in μ b: $\sigma_{nd}^{EXP} = 508(15) \ \mu$ b							
	Λ	LO	NLO	$N^{2}LO$	$N^{3}LO(L)$	N ³ LO	
	500	231	343	322	272	487	
	600	231	369	348	306	491	
	700	231	385	362	343	493	

n-³He radiative capture cross section^{*} in μ b: $\sigma_{n}^{\text{EXP}} = 55(4) \ \mu$ b

Λ	LO	NLO	$N^{2}LO$	$N^{3}LO(L)$	N ³ LO
500	15.2	5.95	0.91	1.36	48.3
600	15.2	10.2	2.87	0.04	53.0
700	15.2	11.5	3.56	0.38	56.6

*N3LO/N2LO potentials and HH wave functions

From http://www.npl.illinois.edu/exp/musun/

Motivations:

- Test of first-principle (χ EFT based) predictions for the μ -capture rates on d and ³He
- For thcoming measurement of the rate on d from MuSun Collaboration with projected error of 1%

Single-nucleon weak current

$$\langle n | \overline{d} \gamma_{\mu} (1 - \gamma_5) u | p \rangle = \overline{u}_n \Big(F_1 \gamma_{\mu} + \frac{i}{2m} F_2 \sigma_{\mu\nu} q^{\nu} \\ -G_A \gamma_{\mu} \gamma_5 - \frac{1}{m_{\mu}} G_{PS} \gamma_5 q_{\mu} \Big) u_p$$

- Additional scalar and pseudotensor f.f.'s, associated with second-class currents, possible (discussed later ...)
- $F_1(q^2)$ and $F_2(q^2)$ related to EM f.f.'s via CVC: well known
- $G_A(q^2) = g_A/(1 + q^2/\Lambda_A^2)^2$: g_A known from neutron β -decay and $\Lambda_A \simeq 1$ GeV from π -electroproduction and $p(\nu_\mu, \mu^+)n$ data
- $G_{PS}(q^2)$ poorly known: PCAC and χ PT predict

$$G_{PS}(q^2) = \frac{2m_{\mu}g_{\pi pn}F_{\pi}}{m_{\pi}^2 - q^2} - \frac{1}{3}g_A m_{\mu}mr_A^2$$

 $G_{PS}(q_0^2) = 8.2 \pm 0.2$ at $q_0^2 = -0.88 m_{\mu}^2$ relevant for $p(\mu^-, \nu_{\mu})n$

From Gorringe's talk at Elba XI (2010)

Experimental situation II: $\mu^- + d$

Two hyperfine states: 1/2 and $3/2 \Rightarrow \Gamma^D$ and Γ^Q From theory: $\Gamma^D \simeq 400 \text{ s}^{-1}$ and $\Gamma^Q \simeq 10 \text{ s}^{-1} \Rightarrow \text{only} \ \Gamma^D$

- Wang *et al.*, PR **139**, B1528 (1965): $\Gamma^D = 365(96) \text{ s}^{-1}$
- Bertini *et al.*, PRD 8, 3774 (1973): $\Gamma^D = 445(60) \text{ s}^{-1}$
- Bardin *et al.*, NPA **453**, 591 (1986): $\Gamma^D = 470(29) \text{ s}^{-1}$
- Cargnelli *et al.*, Workshop on fundamental μ physics, Los Alamos, 1986, LA10714C: $\Gamma^D = 409(40) \text{ s}^{-1}$
- MuSun Collaboration: result to come!

Experimental situation III: $\mu^- + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + \nu_{\mu}$

Total capture rate Γ_0 :

- Folomkin *et al.*, PL **3**, 229 (1963): $\Gamma_0 = 1410(140) \text{ s}^{-1}$
- Auerbach *et al.*, PR **138**, B127 (1967): $\Gamma_0 = 1505(46) \text{ s}^{-1}$
- Clay *et al.*, PR **140**, B587 (1965): $\Gamma_0 = 1465(67) \text{ s}^{-1}$
- Ackerbauer *et al.*, PLB **417**, 224 (1998): $\Gamma_0=1496(4) \text{ s}^{-1}$

Angular correlation A_v :

• Souder *et al.*, NIMA **402**, 311 (1998): $A_v = 0.63 \pm 0.09$ (stat.)^{+0.11}_{-0.14} (syst.)

Two-body weak currents

- Vector currents from isovector components of \mathbf{j}_{γ} (CVC)
- Axial currents at N³LO include pion-range terms as well as a single contact term (corresponding LEC denoted by d_R)
- One of the two LEC's in the TNI at N²LO is related to d_R :

$$d_{R} = \frac{m_{N}}{\Lambda_{\chi} g_{A}} c_{D} + \frac{1}{3} m_{N} (c_{3} + 2 c_{4}) + \frac{1}{6}$$
TNI at N2LO contact axial current
$$\overbrace{c_{D}}^{\text{TNI at N2LO}} c_{E} \qquad \overbrace{d_{R}}^{\text{contact axial current}}$$

,

Fix d_R and c_E to reproduce the GT m.e. in ³H β -decay and trinucleon BE^{*}

*Gardestig and Phillips (2006), Gazit, Quaglioni, and Navratil (2009)

$\chi \rm EFT$ predictions for $\mu \mbox{-} \rm capture$ on $^2\rm H$ and $^3\rm He$					
	$^{1}S_{0}$	${}^{3}P_{2}$	$\Gamma(^{2}\mathrm{H})$	$\Gamma(^{3}\text{He})$	
$IA(\Lambda = 500 \text{ MeV})$	238.8	72.4	381.7	1362	
$IA(\Lambda = 600 \text{ MeV})$	238.7	72.0	380.8	1360	
$FULL(\Lambda = 500 \text{ MeV})$	$254.4{\pm}0.9$	72.1	$399.2 {\pm} 0.9$	1488 ± 9	
$\mathrm{FULL}(\Lambda = 600 \mathrm{~MeV})$	255.2 ± 1.0	71.6	$399.1 {\pm} 1.0$	1499 ± 9	

Constraints on the induced pseudoscalar form factor

Theory predictions with conservative error estimates:

 $\Gamma(^{2}H) = (399 \pm 3) \operatorname{sec}^{-1}$ $\Gamma(^{3}He) = (1494 \pm 21) \operatorname{sec}^{-1}$

These errors are due primarily to:

- 0.5% experimental error on GT^{EXP}
- 0.4% uncertainties in electroweak radiative corrections—they increase the rates by $\simeq 3\%$ (Czarnecki *et al.*, 2007)
- cutoff dependence

Using $\Gamma^{\text{EXP}}(^{3}\text{He}) = (1496 \pm 4) \text{ sec}^{-1}$, one extracts

$$G_{PS}(q_0^2) = 8.2 \pm 0.7$$
 $q_0^2 = -0.954 m_\mu^2$

versus a χPT prediction of 7.99 ± 0.20 from Bernard *et al.* (1994) and Kaiser (2003)

Summary and outlook

- Nuclear χEFT in reasonable agreement with data for suppressed processes
- In some instances, such as μ -capture, it provides predictions with $\leq 1\%$ accuracy: extract information on nucleon properties
- Current efforts in χEFT aimed at:
 - 1. Completing an independent derivation of the parity-violating (PV) potential at N²LO (Q), and an analysis of PV effects in A=2, 3, and 4 systems
 - 2. EM structure of light nuclei: d(e, e')pn at threshold, charge and magnetic form factors, ...
 - 3. Including Δ d.o.f. explicitly in nuclear potentials and currents (to improve convergence)
 - 4. Loop corrections to axial current