Electroweak Processes in the Few Nucleons: the Old and the New

- EM currents in the conventional approach
- EM currents in χ EFT up to one loop
- A (sensitive) test case: radiative captures in A=3 and 4 systems
- Nuclear theory at 1%: μ -capture in d and ${}^{3}\text{H}$
- Summary and outlook

In collaboration with:

- L. Girlanda L. Marcucci S. Pastore M. Viviani
- A. Kievsky M. Piarulli R.B. Wiringa

References:

Pastore *et al.* PRC**80**, 034004 (2009); Girlanda *et al.* PRL**105**, 232502 (2010); Marcucci *et al.*, PRC**83**, 014002 (2011)

Conventional approach: EM currents

Marcucci *et al.*, PRC**72**, 014001 (2005) $\mathbf{j} = \mathbf{j}^{(1)}$ $+ \mathbf{j}^{(2)}(\mathbf{v}) + \boxed{\begin{array}{c} \pi \\ & &$

- Static part v_0 of v from π -like (PS) and ρ -like (V) exchanges
- Currents from corresponding PS and V exchanges, for example

$$\begin{aligned} \mathbf{j}_{ij}(v_0; \mathbf{PS}) &= \mathrm{i} \left(\boldsymbol{\tau}_i \times \boldsymbol{\tau}_j \right)_z \left[v_{\mathbf{PS}}(k_j) \boldsymbol{\sigma}_i \left(\boldsymbol{\sigma}_j \cdot \mathbf{k}_j \right) \right. \\ &+ \left. \frac{\mathbf{k}_i - \mathbf{k}_j}{k_i^2 - k_j^2} v_{\mathbf{PS}}(k_i) \left(\boldsymbol{\sigma}_i \cdot \mathbf{k}_i \right) \left(\boldsymbol{\sigma}_j \cdot \mathbf{k}_j \right) \right] + i &= j \end{aligned}$$

with $v_{PS}(k) = v^{\sigma\tau}(k) - 2v^{t\tau}(k)$ projected out from v_0 components

$$\mathbf{j}^{(2)}(\mathbf{v}) \xrightarrow[long range]{\pi} + \frac{\pi}{2} + \frac{\pi}{2}$$

• Currents from v_p via minimal substitution in i) <u>explicit</u> and ii) implicit *p*-dependence, the latter from

$$\boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j = -1 + (1 + \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j) \operatorname{e}^{\operatorname{i}(\mathbf{r}_{ji} \cdot \mathbf{p}_i + \mathbf{r}_{ij} \cdot \mathbf{p}_j)}$$

• Currents are conserved, contain no free parameters, and are consistent with short-range behavior of v and $V^{2\pi}$, but are not unique

Variety of EM observables in A=2-7 nuclei well reproduced, including μ 's and M1 widths, elastic and inelastic f.f.'s, inclusive response functions, ...

<u>current</u> predictions for ${}^{2}H(n,\gamma){}^{3}H$ and ${}^{3}He(n,\gamma){}^{4}He$ cross-sections shown later

Nuclear $\chi {\rm EFT}$ approach

Weinberg, PLB251, 288 (1990); NPB363, 3 (1991); PLB295, 114 (1992)

- χ EFT exploits the χ -symmetry exhibited by QCD to restrict the form of π interactions with other π 's, and with N's, Δ 's, ...
- The pion couples by powers of its momentum Q, and \mathcal{L}_{eff} can be systematically expanded in powers of Q/Λ_{χ} ($\Lambda_{\chi} \simeq 1 \text{ GeV}$)

$$\mathcal{L}_{eff} = \mathcal{L}^{(0)} + \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \dots$$

- χ EFT allows for a perturbative treatment in terms of a Q-as opposed to a coupling constant–expansion
- The unknown coefficients in this expansion—the LEC's—are fixed by comparison with experimental data
- Nuclear χEFT provides a practical calculational scheme, susceptible (in principle) of systematic improvement

Work in nuclear χEFT : a partial listing

Since Weinberg's papers (1990–92), nuclear χ EFT has developed into an intense field of research. A very incomplete list:

- *NN* and *NNN* potentials:
 - van Kolck et al. (1994–96)
 - Kaiser, Weise et al. (1997–98)
 - Glöckle, Epelbaum, Meissner et al. (1998–2005)
 - Entem and Machleidt (2002–03)
- Currents and nuclear electroweak properties:
 - Rho, Park et al. (1996–2009), hybrid studies in A=2–4
 - Meissner et al. (2001), Kölling et al. (2009–2010)
 - Phillips (2003), deuteron static properties and f.f.'s

Lots of work in pionless EFT too ...

Formalism

• Time-ordered perturbation theory (TOPT):

$$\begin{aligned} -\frac{\hat{\mathbf{e}}_{\mathbf{q}\lambda}}{\sqrt{2\,\omega_q}} \cdot \mathbf{j} &= \langle N'N' \mid T \mid NN; \gamma \rangle \\ &= \langle N'N' \mid H_1 \sum_{n=1}^{\infty} \left(\frac{1}{E_i - H_0 + i\,\eta} H_1 \right)^{n-1} \mid NN; \gamma \rangle \end{aligned}$$

• Power counting:

$$T = T^{LO} + T^{NLO} + T^{N^2LO} + \dots$$
, and $T^{N^nLO} \sim (Q/\Lambda_{\chi})^n T^{LO}$

- Irreducible and recoil-corrected reducible contributions retained in T expansion
- A contribution with N interaction vertices and L loops scales as

 α_i = number of derivatives (momenta) and β_i = number of π 's at each vertex

- These depend on the proton and neutron μ 's ($\mu_p = 2.793 \,\mu_N$ and $\mu_n = -1.913 \,\mu_N$), g_A , and F_{π}
- One-loop corrections to one-body current are absorbed into μ_N and $\langle r_N^2 \rangle$

$N^{3}LO(eQ)$ corrections

• One-loop corrections:

• Tree-level current with one $e Q^2$ vertex from $\mathcal{L}_{\gamma \pi N}$ of Fettes etal. (1998), involving 3 LEC's (~ $\gamma N \Delta$ and $\gamma \rho \pi$ currents) :

• Contact currents

from i) minimal substitution in the interactions involving ∂N (7 LEC's determined from strong-interaction sector) and ii) non-minimal couplings (2 LEC's)

<u>Technical issues I: recoil corrections at N²LO</u>

• N^2LO reducible and irreducible contributions in TOPT

• Recoil corrections to the reducible contributions obtained by expanding in powers of $(E_i - E_I)/\omega_{\pi}$ the energy denominators

$$E_{I} = v^{\pi} \left(1 + \frac{E_{i} - E_{I}}{2\omega_{\pi}}\right) \frac{1}{E_{i} - E_{I}} \mathbf{j}^{\text{LO}}$$

$$= -\frac{v^{\pi}}{2\omega_{\pi}} \mathbf{j}^{\text{LO}}$$

• Recoil corrections to reducible diagrams cancel irreducible contribution

Technical issues II: recoil corrections at N³LO

• Reducible contributions

$$\mathbf{j}_{\text{red}} = \int v^{\pi}(\mathbf{q}_2) \frac{1}{E_i - E_I} \mathbf{j}^{\text{NLO}}(\mathbf{q}_1) -2 \int \frac{\omega_1 + \omega_2}{\omega_1 \, \omega_2} V_{\pi NN}(2, \mathbf{q}_2) V_{\pi NN}(2, \mathbf{q}_1) V_{\pi NN}(1, \mathbf{q}_2) V_{\gamma \pi NN}(1, \mathbf{q}_1)$$

• Irreducible contributions

$$\mathbf{j}_{\text{irr}} = 2 \int \frac{\omega_1 + \omega_2}{\omega_1 \, \omega_2} \, V_{\pi NN}(2, \mathbf{q}_2) \, V_{\pi NN}(2, \mathbf{q}_1) \, V_{\pi NN}(1, \mathbf{q}_2) \, V_{\gamma \pi NN}(1, \mathbf{q}_1) \\ + 2 \int \frac{\omega_1^2 + \omega_2^2 + \omega_1 \, \omega_2}{\omega_1 \, \omega_2(\omega_1 + \omega_2)} \left[V_{\pi NN}(2, \mathbf{q}_1), V_{\pi NN}(2, \mathbf{q}_2) \right]_{-} \, V_{\pi NN}(1, \mathbf{q}_2) \, V_{\gamma \pi NN}(1, \mathbf{q}_1)$$

• Partial cancellations between recoil corrections to reducible diagrams and irreducible contributions

LS-equation regulator ~ $\exp(-Q^4/\Lambda^4)$ with Λ =500, 600, and 700 MeV (cutting off momenta $Q \gtrsim 3-4 m_{\pi}$)

Previous (and contemporary) work on χEFT currents

- Expressions for two-body currents (and potential, of course) at one loop in agreement with those of Kölling *et al.* (2009) derived via TOPT and the unitary transformation method
- Park *et al.* (1996) use covariant perturbation theory, but obtain different isospin structure for these loop currents: differences in treatment of box diagrams

<u>EM observables at N^3LO </u>

- Pion loop corrections and (minimal) contact terms known
- Five LEC's: d^S , d_1^V , and d_2^V could be determined by pion photo-production data on the nucleon

 $d^{\mathbf{S}}, d_1^{\mathbf{V}}, d_2^{\mathbf{V}} \qquad c^{\mathbf{S}}, c^{\mathbf{V}}$

- $d_2^V/d_1^V = 1/4$ assuming Δ -resonance saturation
- Three-body currents at N³LO vanish:

Fitted LEC values

- LEC's—in units of Λ —corresponding to $\Lambda = 500-700$ MeV for AV18/UIX (N3LO/N2LO)
- Isoscalar d^S (c^S) and isovector d_1^V (c^V) associated with higher-order $\gamma \pi N$ (contact) currents

Λ	$\Lambda^2 d^S \times 10^2$	$\Lambda^4 c^S$	$\Lambda^2 d_1^V$	$\Lambda^4 c^V$
500	-8.85(-0.225)	-3.18(-2.38)	5.18(5.82)	-11.3 (-11.4)
600	-2.90 (9.20)	-7.10(-5.30)	6.55(6.85)	-12.9(-23.3)
700	6.64~(20.4)	-13.2 (-9.83)	8.24 (8.27)	$-1.70 \ (-46.2)$

The nd and n^{3} He radiative captures

• Suppressed M1 processes:

	$\sigma_{ m exp}({ m mb})$
${}^{1}\mathrm{H}(n,\gamma){}^{2}\mathrm{H}$	334.2(5)
$^{2}\mathrm{H}(n,\gamma)^{3}\mathrm{H}$	0.508(15)
${}^{3}\mathrm{He}(n,\gamma){}^{4}\mathrm{He}$	0.055(3)

- The ³H and ⁴He bound states are approximate eigenstates of the one-body *M*1 operator, *e.g.* $\hat{\mu}(IA) |^{3}H\rangle \simeq \mu_{p} |^{3}H\rangle$ and $\langle nd | \hat{\mu}(IA) |^{3}H\rangle \simeq 0$ by orthogonality
- A=3 and 4 radiative (and weak) captures very sensitive to
 i) small components in the w.f.'s and ii) many-body terms in the electro(weak) currents (80-90% of cross section!)

Wave functions: recent progress

- 3 and 4 bound-state w.f.'s and 2+1 continuum routine by now
- Challenges with 3+1 continuum:
 - 1. Coupled-channel nature of scattering problem: n^{-3} He and p^{-3} H channels both open
 - 2. Peculiarities of ⁴He spectrum (see below): hard to obtain numerically converged solutions

760 keV $\int_{-----}^{-----} \frac{n-^{3}}{p-^{3}}$ He threshold 20 MeV (not in scale) $------ O^{+}(g.s.)$

• Major effort by several groups^{*}: both singlet and triplet n-³He scattering lengths in good agreement with data

^{*}Deltuva and Fonseca (2007); Lazauskas (2009); Viviani *et al.* (2010)

	Triplet scattering length a_1 (fm)	
Method	AV18	AV18/UIX
HH	3.56 - i 0.0077	3.39 - i 0.0059
RGM	3.45 - i 0.0066	3.31 - i 0.0051
FY	3.43 - i 0.0082	3.23 - i 0.0054
AGS	3.51 - i 0.0074	
R-matrix	3.29 - i 0.0012	
EXP	3.28(5) - i0.001(2)	
EXP	3.36(1)	
EXP	3.48(2)	

Singlet scattering length a_0 (harder to calculate!) also in good agreement with experiment

<u><i>n</i>-<i>d</i></u> radiative capture cross section [*] in μ b: $\sigma_{nd}^{EXP} = 508(15) \ \mu$ b							
	Λ	LO	NLO	$N^{2}LO$	$N^{3}LO(L)$	N ³ LO	
	500	231	343	322	272	487	
	600	231	369	348	306	491	
	700	231	385	362	343	493	

n-³He radiative capture cross section^{*} in μ b: $\sigma_{n}^{\text{EXP}} = 55(4) \ \mu$ b

Λ	LO	NLO	$N^{2}LO$	$N^{3}LO(L)$	N ³ LO
500	15.2	5.95	0.91	1.36	48.3
600	15.2	10.2	2.87	0.04	53.0
700	15.2	11.5	3.56	0.38	56.6

*N3LO/N2LO potentials and HH wave functions

From http://www.npl.illinois.edu/exp/musun/

Single-nucleon weak current

$$\langle n | \overline{d} \gamma_{\mu} (1 - \gamma_5) u | p \rangle = \overline{u}_n \Big(F_1 \gamma_{\mu} + \frac{i}{2m} F_2 \sigma_{\mu\nu} q^{\nu} \\ -G_A \gamma_{\mu} \gamma_5 - \frac{1}{m_{\mu}} G_{PS} \gamma_5 q_{\mu} \Big) u_p$$

- Additional scalar and pseudotensor f.f.'s, associated with second-class currents, possible (discussed later ...)
- $F_1(q^2)$ and $F_2(q^2)$ related to EM f.f.'s via CVC: well known
- $G_A(q^2) = g_A/(1 + q^2/\Lambda_A^2)^2$: g_A known from neutron β -decay and $\Lambda_A \simeq 1$ GeV from π -electroproduction and $p(\nu_\mu, \mu^+)n$ data
- $G_{PS}(q^2)$ poorly known: PCAC and χ PT predict

$$G_{PS}(q^2) = \frac{2m_{\mu}g_{\pi pn}F_{\pi}}{m_{\pi}^2 - q^2} - \frac{1}{3}g_A m_{\mu}mr_A^2$$

 $G_{PS}(q_0^2) = 8.2 \pm 0.2$ at $q_0^2 = -0.88 m_{\mu}^2$ relevant for $p(\mu^-, \nu_{\mu})n$

From Gorringe's talk at Elba XI (2010).

Experimental situation II: $\mu^- + d$

Two hyperfine states: 1/2 and $3/2 \Rightarrow \Gamma^D$ and Γ^Q From theory: $\Gamma^D \simeq 400 \text{ s}^{-1}$ and $\Gamma^Q \simeq 10 \text{ s}^{-1} \Rightarrow \text{only} \ \Gamma^D$

- Wang *et al.*, PR **139**, B1528 (1965): $\Gamma^D = 365(96) \text{ s}^{-1}$
- Bertini *et al.*, PRD 8, 3774 (1973): $\Gamma^D = 445(60) \text{ s}^{-1}$
- Bardin *et al.*, NPA **453**, 591 (1986): $\Gamma^D = 470(29) \text{ s}^{-1}$
- Cargnelli *et al.*, Workshop on fundamental μ physics, Los Alamos, 1986, LA10714C: $\Gamma^D = 409(40) \text{ s}^{-1}$
- MuSun Collaboration: result to come!

Experimental situation III: $\mu^- + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + \nu_{\mu}$

Total capture rate Γ_0 :

- Folomkin *et al.*, PL **3**, 229 (1963): $\Gamma_0 = 1410(140) \text{ s}^{-1}$
- Auerbach *et al.*, PR **138**, B127 (1967): $\Gamma_0 = 1505(46) \text{ s}^{-1}$
- Clay *et al.*, PR **140**, B587 (1965): $\Gamma_0 = 1465(67) \text{ s}^{-1}$
- Ackerbauer *et al.*, PLB **417**, 224 (1998): $\Gamma_0=1496(4) \text{ s}^{-1}$

Angular correlation A_v :

• Souder *et al.*, NIMA **402**, 311 (1998): $A_v = 0.63 \pm 0.09$ (stat.)^{+0.11}_{-0.14} (syst.)

Nuclear weak currents

Two-body weak currents:

- Vector currents from isovector components of \mathbf{j}_{γ} (CVC)
- In SNPA the leading contribution in the axial currents is from Δ -excitation, additional π and ρ -meson contributions turn out be tiny

• Axial currents in χEFT at N³LO, derived in Park *et al.* (2003), depend on a single LEC d_R

Common strategy: fix g_A^* in SNPA and $d_R(\Lambda)$ in χ EFT by fitting the GT m.e. in ³H β -decay

SNPA and χEFT predictions I: $\Gamma_0(\mu^- + ^2 H)$

SNPA and χEFT predictions II: $\Gamma_0(\mu^- + {}^3 \text{He})$

SNPA(AV18/UIX)	$\Gamma_0 \ \mathrm{s}^{-1}$
$g_A = 1.2654(42)$	1486(8)
$g_A = 1.2695(29)$	1486(5)
$\chi EFT^*(AV18/UIX)$	Γ_0
$\Lambda = 500 \text{ MeV}$	1487(8)
$\Lambda = 600 \text{ MeV}$	1488(9)
$\Lambda = 800 \text{ MeV}$	1488(8)
$\chi EFT(N3LO/N2LO; \Lambda=600 \text{ MeV})$	1480(9)

- Theory (G_{PS} from χPT): $\Gamma_0 = 1484(13) \text{ s}^{-1}$
- With radiative corrections from Czarnecki, Marciano, and Sirlin (2007) $\Gamma_0 \Rightarrow 1494(13) \text{ s}^{-1} \text{ vs. } \Gamma_0(\exp)=1496(4) \text{ s}^{-1}$

 $\Gamma_0(\mu^- + {}^3 \text{He})$ and second class currents

Standard model allows additional weak f.f.'s

$$\langle n|J_{\mu}^{\text{second class}}|p\rangle = \overline{u}_n \Big(F_S q_{\mu} - \frac{i}{2m}G_T \sigma_{\mu\nu} \gamma_5 q^{\nu}\Big)u_p$$

Constraints on F_S and G_T from μ -capture on ³He—analysis by Gazit (2008) but consistent with present predictions:

$$F_S = -0.005 \pm 0.68$$
 $G_T/G_A = -0.1 \pm 0.68$

• Limits on F_S tighter than from a survey of $0^+ \rightarrow 0^+ \beta$ -decays:

 $F_S = -0.01 \pm 0.27$ Severijns *et al.* (2006)

• QCD sum rule estimate for tensor f.f.:

 $G_T/G_A = -0.0152(53)$ Shiomi (1996)

Summary and outlook

- Nuclear theory in reasonable agreement with data for suppressed processes
- In some instances, such as μ -capture, it provides predictions with $\leq 1\%$ accuracy: extract information on nucleon properties
- Current efforts in χEFT aimed at:
 - 1. Completing an independent derivation of the parity-violating (PV) potential at N²LO (Q), and an analysis of PV effects in A=2, 3, and 4 systems
 - 2. EM structure of light nuclei: d(e, e')pn at threshold, charge and magnetic form factors, ...
 - 3. Including Δ d.o.f. explicitly in nuclear potentials and currents (to improve convergence)