1. Nuclear EM Currents in χEFT

2. Parity-Violating Observables in A=3 and 4 Systems

Rocco Schiavilla (JLab/ODU)

In collaboration with:

Part 1: S. Pastore and J.L. Goity

Part 2: M. Viviani, A. Arriaga, J. Carlson, and R.B. Wiringa

Nuclear EM Currents in χEFT

Pastore, Schiavilla, and Goity, PRC78, 064002 (2008)

- Currents from nuclear interactions
- χEFT calculation: preliminaries
- Currents up to one loop (or N^3LO)
- Calculation of EM observables at N²LO (no loops) in A=2 and 3 systems

Conserved Currents from Nuclear Interactions

Marcucci et al., PRC**72**, 014001 (2005) $\mathbf{j} = \mathbf{j}^{(1)}$ $+ \mathbf{j}^{(2)}(\mathbf{v}) + \boxed{\begin{array}{c} \pi \\ & & \\$

- Static part v_0 of v from π -like (PS) and ρ -like (V) exchanges
- Currents from corresponding PS and V exchanges, for example

$$\begin{split} \mathbf{j}_{ij}(v_{\mathbf{0}}; \mathbf{PS}) &= \mathrm{i} \left(\boldsymbol{\tau}_{i} \times \boldsymbol{\tau}_{j} \right)_{z} \left[v_{\mathbf{PS}}(k_{j}) \boldsymbol{\sigma}_{i} \left(\boldsymbol{\sigma}_{j} \cdot \mathbf{k}_{j} \right) \right. \\ &+ \left. \frac{\mathbf{k}_{i} - \mathbf{k}_{j}}{k_{i}^{2} - k_{j}^{2}} v_{\mathbf{PS}}(k_{i}) \left(\boldsymbol{\sigma}_{i} \cdot \mathbf{k}_{i} \right) \left(\boldsymbol{\sigma}_{j} \cdot \mathbf{k}_{j} \right) \right] + i \rightleftharpoons j \end{split}$$

with $v_{PS}(k) = v^{\sigma \tau}(k) - 2v^{t\tau}(k)$ projected out from v_0 components

$$\mathbf{j}^{(2)}(\mathbf{v}) \xrightarrow[long range]{\pi} + \frac{\pi}{2} + \frac{\pi}{2}$$

• Currents from v_p via minimal substitution in i) explicit and ii) implicit *p*-dependence, the latter from

$$\boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j = -1 + (1 + \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j) \operatorname{e}^{\operatorname{i}(\mathbf{r}_{ji} \cdot \mathbf{p}_i + \mathbf{r}_{ij} \cdot \mathbf{p}_j)}$$

- Currents from v_p are short ranged, and contain both isoscalar and isovector terms
- Incidentally, this method leads to a general and elegant formula for the (conserved) current due to any $v_{ij} \tau_i \cdot \tau_j$:

$$\mathbf{j}_{ij}(\mathbf{q}) = \mathrm{i} \, v_{ij} \left(\epsilon_i \int_{\gamma_{ij}} \mathrm{d} \mathbf{s} \, \mathrm{e}^{\mathrm{i} \mathbf{q} \cdot \mathbf{s}} + \epsilon_j \int_{\gamma'_{ji}} \mathrm{d} \mathbf{s}' \, \mathrm{e}^{\mathrm{i} \mathbf{q} \cdot \mathbf{s}'} \right) (1 + \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j)$$

$$\overset{\gamma_{ij}}{\underset{\mathbf{r}_i}{\overset{\boldsymbol{\gamma}_{ji}}}{\overset{\boldsymbol{\gamma}_{ji}}{\overset{\boldsymbol{\gamma}_{ji}}{\overset{\boldsymbol{\gamma}_{ji}}{\overset{\boldsymbol{\gamma}_{ji}}{\overset{\boldsymbol{\gamma}_{ji}}}{\overset{\boldsymbol{\gamma}_{ji}}{\overset{\boldsymbol{\gamma}_{ji}}{\overset{\boldsymbol{\gamma}_{ji}}{\overset{\boldsymbol{\gamma}_{ji}}}{\overset{\boldsymbol{\gamma}_{ji}}{\overset{\boldsymbol{\gamma}_{ji}}{\overset{\boldsymbol{\gamma}_{ji}}}{\overset{\boldsymbol{\gamma}_{ji}}{\overset{\boldsymbol{\gamma}_{ji}}{\overset{\boldsymbol{\gamma}_{ji}}}{\overset{\boldsymbol{\gamma}_{ji}}{\overset{\boldsymbol{\gamma}_{ji}}}{\overset{\boldsymbol{\gamma}_{ji}}{\overset{\boldsymbol{\gamma}_{ji}}}{\overset{\boldsymbol{\gamma}_{ji}}{\overset{\boldsymbol{\gamma}_{ji}}}{\overset{\boldsymbol{\gamma}_{ji}}}{\overset{\boldsymbol{\gamma}_{ji}}}{\overset{\boldsymbol{\gamma}_{ji}}}{\overset{\boldsymbol{\gamma}_{ji}}}{\overset{\boldsymbol{\gamma}_{ji}}}{\overset{\boldsymbol{\gamma}_{ji}}}{\overset{\boldsymbol{\gamma}_{ji}}}}}}}}}}}}}}}}}$$

Satisfactory description of a variety of nuclear EM properties [see Marcucci *et al.* (2005) and (2008)]

but i) ${}^{2}\text{H}(n,\gamma){}^{3}\text{H}$ and ${}^{3}\text{He}(n,\gamma){}^{4}\text{He}$ cross-sections too large by $\approx 10\%$ and $\approx 60\%$, ii) isoscalar magnetic moments are a few % off (10% in A=7 nuclei), ...

χEFT Calculation: Preliminaries

- Degrees of freedom: $pions(\pi)$, nucleons (N), and Δ -isobars (Δ)
- Time-ordered perturbation theory (TOPT):

$$-\frac{\hat{\mathbf{e}}_{\mathbf{q}\lambda}}{\sqrt{2\,\omega_q}} \cdot \mathbf{j} = \langle N'N' \mid T \mid NN; \gamma \rangle$$
$$= \langle N'N' \mid H_1 \sum_{n=1}^{\infty} \left(\frac{1}{E_i - H_0 + i\,\eta} H_1 \right)^{n-1} \mid NN; \gamma \rangle$$

- $H_0 = \text{free } \pi$, N, and Δ Hamiltonians; $H_1 = \text{interacting } \pi$, N, Δ , and γ Hamiltonians
- Term with $M H_1$'s $\rightarrow M!$ time-ordered diagrams; for example

$$\left| \mathbf{I} \right| = \left| \mathbf{I} \right| = \left|$$

Interaction Hamiltonians from χEFT

Weinberg, PLB**251**, 288 (1990); NPB**363**, 3 (1991); PLB**295**, 114 (1992)

- A quantitative understanding of low-energy nuclear processes from *ab initio* QCD calculations is not (yet) available
- χ EFT exploits the χ -symmetry exhibited by QCD to restrict the form of π interactions with other π 's, and with N's, Δ 's, ...
- The pion couples by powers of its momentum Q, and \mathcal{L}_{eff} can be systematically expanded in powers of Q/M ($M \simeq 1 \text{ GeV}$)

$$\mathcal{L}_{eff} = \mathcal{L}^{(0)} + \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \dots$$

- χ EFT allows for a perturbative treatment in terms of a Q-as opposed to a coupling constant–expansion
- The unknown coefficients in this expansion—the LEC's—are fixed by comparison with experimental data

Power Counting

• In the chiral expansion the transition amplitude is expressed as $T = T^{LO} + T^{NLO} + T^{N^2LO} + \dots, \text{ and } T^{N^nLO} \sim (Q/M)^n T^{LO}$

and power counting allows one to arrange contributions to T in powers of Q

• A contribution with N interaction vertices and L loops scales as

 α_i = number of derivatives (momenta) and β_i = number of π 's at each vertex

• This power counting also follows from considering Feynman diagrams, where loop integrations are in four dimensions

$$\frac{1}{E_i - H_0} |I\rangle \sim \frac{1}{2m_N - (m_\Delta + m_N + \omega_\pi)} |I\rangle \sim \frac{1}{Q} |I\rangle$$

• $h_A = 2.77$ from width of Δ resonance

- $H_{\text{CT},1}$: 4-nucleon contact terms, 2 LEC's
- $H_{CT,2-5}$: contact terms involving one or two Δ 's, 5 LEC's
- $H_{\rm CT2D}$: 4-nucleon contact terms with two gradients, 14 LEC's

Electromagnetic Interaction Vertices

• Minimal substitution in the π - and N-derivative couplings

 $\nabla \pi_{\mp}(\mathbf{x}) \rightarrow [\nabla \mp i \, e \mathbf{A}(\mathbf{x})] \, \pi_{\mp}(\mathbf{x}) \quad \nabla N(\mathbf{x}) \rightarrow [\nabla - i \, e \, e_N \, \mathbf{A}(\mathbf{x})] \, N(\mathbf{x})$

• $H_{\gamma NN}$ and $H_{\gamma N\Delta}$ include non-minimal couplings

with $\mu_p = 2.793 \,\mu_N$ and $\mu_n = -1.913 \,\mu_N$, and $\mu^* \simeq 3 \,\mu_N$ from $\gamma N \Delta$ data

• One-loop corrections to the one-body current, absorbed into μ_N and $\langle r_N^2 \rangle$

• Currents from (NN)(NN) contact interactions with two gradients involving a number of LEC's

• One-loop renormalization of tree-level currents

<u>Technical Issues I: Recoil Corrections at N²LO</u>

• N^2LO reducible and irreducible contributions in TOPT

• Recoil corrections to the reducible contributions obtained by expanding in powers of $(E_i - E_I)/\omega_{\pi}$ the energy denominators

$$E_{I} = v^{\pi} \left(1 + \frac{E_{i} - E_{I}}{2\omega_{\pi}}\right) \frac{1}{E_{i} - E_{I}} \mathbf{j}^{\text{LO}}$$

$$= -\frac{v^{\pi}}{2\omega_{\pi}} \mathbf{j}^{\text{LO}}$$

• Recoil corrections to reducible diagrams cancel irreducible contribution

<u>Technical Issues II: Recoil Corrections at N³LO</u>

• Reducible contributions

$$\mathbf{j}_{\text{red}} = \int v^{\pi}(\mathbf{q}_2) \frac{1}{E_i - E_I} \mathbf{j}^{\text{NLO}}(\mathbf{q}_1) -2 \int \frac{\omega_1 + \omega_2}{\omega_1 \, \omega_2} V_{\pi NN}(2, \mathbf{q}_2) V_{\pi NN}(2, \mathbf{q}_1) V_{\pi NN}(1, \mathbf{q}_2) V_{\gamma \pi NN}(1, \mathbf{q}_1)$$

• Irreducible contributions

$$\mathbf{j}_{\text{irr}} = 2 \int \frac{\omega_1 + \omega_2}{\omega_1 \, \omega_2} \, V_{\pi NN}(2, \mathbf{q}_2) \, V_{\pi NN}(2, \mathbf{q}_1) \, V_{\pi NN}(1, \mathbf{q}_2) \, V_{\gamma \pi NN}(1, \mathbf{q}_1) \\ + 2 \int \frac{\omega_1^2 + \omega_2^2 + \omega_1 \, \omega_2}{\omega_1 \, \omega_2(\omega_1 + \omega_2)} \left[V_{\pi NN}(2, \mathbf{q}_1), V_{\pi NN}(2, \mathbf{q}_2) \right]_{-} \, V_{\pi NN}(1, \mathbf{q}_2) \, V_{\gamma \pi NN}(1, \mathbf{q}_1)$$

• Partial cancellations between recoil corrections to reducible diagrams and irreducible contributions (valid to all orders?)

<u>Current Conservation</u>

• Potential at N²LO in χ EFT (ignoring Δ 's)

- It is in agreement with that obtained with the method of unitary transformations [Epelbaum *et al.*, NPA**637**, 107 (1998)]
- Retaining recoil corrections in both v_{NN} and **j** ensures current conservation up to N³LO included

$$\mathbf{q} \cdot \mathbf{j} = \left[\frac{p_1^2}{2m_N} + \frac{p_2^2}{2m_N} + \upsilon_{NN} , \ e(e_1 + e_2)\right]_{-} \quad e_i \equiv (1 + \tau_{i,z})/2$$

• In hybrid calculations, the continuity equation is not strictly satisfied . . .

Calculation

• To remove divergencies in matrix elements of two-body currents, a simple Gaussian cutoff is adopted

$$C_{\Lambda}(p) = e^{-(p/\Lambda)^2} \qquad \Lambda \le 1 \text{ GeV}$$

- It is expected that predictions should be independent of Λ (or only weakly dependent on Λ , see later)
- In the present study, Λ in the range (500–800) MeV has been considered
- Hybrid approach: matrix elements of EM currents from χ EFT between A=2 (3) w.f.'s from realistic 2N (2N+3N) interactions
- No loops (for the time being)

• d magnetic moment (μ_d) and isoscalar combination (μ_S) of ${}^{3}\text{H}/{}^{3}\text{He}$ magnetic moments

	$\mu_d (\mu_N)$		μ_S (μ_N)	
	AV18	CDB	AV18/UIX	CDB/UIX^*
LO	+ 0.8469	+ 0.8521	+ 0.4104	+ 0.4183
$N^{2}LO-RC$	-0.0082	-0.0080	- 0.0045	- 0.0052
EXP	+0.8574		+0.426	

• N²LO contribution (Λ -independent) is $\simeq 1\%$ of LO, but of opposite sign

- N²LO- Δ_c contribution vanishes, as $\mu_{\Delta_c}^{N^2LO} |\Psi_{NN}; L = \text{even} \rangle = 0$
- If $h_A \ (\mu^*)$ from Δ width (γN data), (EXP-TH)/EXP $\simeq 2.5\%$

Isovector EM Observables at N²LO: μ_V (³He/³H)

• $C_{\Delta}(\Lambda)$ fixed to reproduce $\sigma^{\text{EXP}}(np \to d\gamma)$

	μ_V (μ_N)		
	AV18/UIX	CDB/UIX*	
LO	-2.159	-2.180	
NLO	-0.197	-0.156	
N^2LO-RC	+ 0.029	+0.024	
$N^2LO-\Delta$	-0.253	-0.202	
Sum	$-\ 2.580$	-2.514	
EXP	-2.553		

• AV18/UIX (CDB/UIX^{*}) $|\mu_V|$ too large (small) by $\simeq 1$ %; N²LO contribution larger than NLO

N²LO Predictions for nd (and $\vec{n}d$) Capture

- N²LO currents constrained to reproduce $\sigma_{\gamma}^{\text{EXP}}(np)$ and μ_{V}^{EXP}
- γ circular polarization, $P_{\gamma} = R_c \mathbf{P}_n \cdot \hat{\mathbf{q}}$, has also been measured

	σ_T (mb)		R_c			
Λ (MeV)	500	600	800	500	600	800
LO	0.229	0.229	0.229	- 0.060	-0.060	-0.060
LO+NLO	0.272	0.260	0.243	-0.218	-0.182	-0.123
$LO+NLO+N^2LO$	0.450	0.382	0.315	-0.437	-0.398	-0.331
EXP	0.508 ± 0.015		-	-0.42 ± 0.0	3	

- $\sigma^{\text{LO}} \simeq 45\% \ \sigma^{\text{EXP}}$: suppressed M1 transition (well known)
- NLO π -seagull and π -in-flight contributions nearly cancel out: at LO+ π -seagull, $\sigma = 0.425$ mb and $R_c = -0.425$ ($\Lambda = 500$ MeV)
- Up to N²LO, theory is $\simeq 25\%$ smaller than EXP: strong Λ dependence partly due to NLO accidental cancellations

Summary and Outlook

- Currents up to N³LO have been derived in χ EFT with explicit N, Δ , and π d.o.f. in a TOPT framework
- Currents up to N²LO constrained to reproduce experimental values for $\sigma_{\gamma}(np)$ and $\mu_V({}^{3}\text{He}/{}^{3}\text{H})$
- N²LO predictions for $\sigma_{\gamma}(nd)$ and R_c are NOT in satisfactory agreement with experiment and exhibit strong Λ -dependence
- Next stage (a major program!):
 - 1. Fix LEC's occurring in \mathbf{j}^{N^3LO} by fitting $v_{NN}^{N^2LO}$ (in progress)
 - 2. Include N³LO currents in A=3-7 calculations
 - 3. Derive three-body currents (also entering at N^3LO)

Parity-Violating Observables in A=3 and 4 Systems

- Theoretical framework: the DDH and EFT PV potentials
- PV observables in few-nucleon systems:
 - 1. Neutron spin rotation in \vec{n} -d scattering^a
 - 2. Longitudinal asymmetry in the \vec{n}^{3} He $\rightarrow p^{3}$ H reaction^b
- Summary and outlook

^aSchiavilla, Viviani, Girlanda, Kievsky, and Marcucci, PRC**78**, 014002 (2008)
^bViviani and Schiavilla, in preparation (2009)

Theoretical Framework

• Weak interactions in the Standard Model

$$H_{\rm W} = \frac{G_F}{\sqrt{2}} \left(J^{\rm CC}_{\mu} J^{\mu\,\rm CC} + \frac{1}{2} J^{\rm NC}_{\mu} J^{\mu\,\rm NC} \right)$$

• H_W has I=0, 1, and 2 components

• Meson-exchange and EFT approaches to hadronic weak interactions: $H_W \to H_W(N, \pi, ...)$

The standard meson exchange formulation, *i.e* the DDH model, involves π -, ρ -, and ω -exchanges, and seven independent couplings $(h_{\pi}^{1}, h_{\rho}^{0,1,2}, h_{\rho}^{1\prime}, \text{ and } h_{\omega}^{0,1})$

EFT Formulation

• Pionless EFT:

$$\begin{aligned} v_{ij}^{\mathrm{EFT-SR}} &= \frac{2\mu^2}{\Lambda_{\chi}^3} \left[\left[C_1 + (C_2 + C_4) \left(\frac{\tau_i + \tau_j}{2} \right)_z + C_5 \mathcal{I}_{ab} \tau_i^a \tau_j^b \right] \left(\sigma_i - \sigma_j \right) \cdot \left[\mathbf{p}_{ij} \,, \, f_{\mu}(r) \right]_+ \right. \\ &+ \left. i \, \tilde{C}_1 \left(\sigma_i \times \sigma_j \right) \cdot \left[\mathbf{p}_{ij} \,, \, f_{\mu}(r) \right]_- + i \, C_6 \epsilon^{ab3} \tau_i^a \tau_j^b \left(\sigma_i + \sigma_j \right) \cdot \left[\mathbf{p}_{ij} \,, \, f_{\mu}(r) \right]_- \right] \end{aligned}$$

determined by five LEC's [Girlanda (2008), Zhu et al.(2005)]

• When π 's are included, three new couplings enter:

$$v_{ij}^{\text{EFT}-\pi} = v_{ij}^{\text{EFT}-\text{SR}} + \left[i \frac{g_A h_\pi^1}{\sqrt{2} F_\pi} \epsilon^{ab3} \tau_i^a \tau_j^b \left(\boldsymbol{\sigma}_i + \boldsymbol{\sigma}_j \right) \cdot \left[\mathbf{p}_{ij} , f_\pi(r) \right]_- + \dots \right]$$

Constraining PV Interactions in Few-Body Nuclei

- A_z in \vec{pp} scattering, A^{γ} in \vec{np} capture, and P^{γ} in $d(\vec{\gamma}, n)p$
- Neutron spin rotation in $\vec{n}p$ and $\vec{n}d$ scattering
- Longitudinal asymmetry in the $\vec{n}^{3}\text{He} \rightarrow p^{3}\text{H}$ reaction

Neutron Spin Rotation

• Transmission of a low energy neutron through matter:

$$e^{ipz}|\sigma\rangle \qquad e^{ip(z-d)} e^{ipdn_{\sigma}}|\sigma\rangle$$

$$= \frac{1}{d} + \frac{2\pi \rho}{p^2} M_{\sigma}(\theta = 0)$$

• PV observable:

\vec{n} -p and \vec{n} -d Scattering with Cold Neutrons

Relevant m.e.'s: ${}^{3}S_{1} \rightarrow {}^{3}P_{1}$ in n-p; ${}^{2,4}S_{1/2} \rightarrow {}^{2}P_{1/2}$ and ${}^{4}P_{1/2}$ in n-d

- Dominated by π -exchange, and weakly dependent on input v^{PC}
- Spin-rotation is an order of magnitude larger in \vec{n} -d than in \vec{n} -p
- For a (realistic) 10 cm long target, PV effect in \vec{n} -d is an order of magnitude larger than in ${}^{1}\text{H}(\vec{n},\gamma){}^{2}\text{H}$

	$ec{n}$ - p		\vec{n} -d	
	AV18	CDB	AV18/UIX	
DDH	5.09	4.63	48.5	
$ ext{DDH-}\pi$	5.21	5.18	56.0	

 $d\phi/dd$ in units of 10^{-9} rad/cm

Longitudinal Asymmetry in \vec{n}^{3} He $\rightarrow p^{3}$ H

• Cold neutrons, two open channels: $p^{3}H(c=1)$ and $n^{3}He(c=2)$

$$\begin{split} \psi_{2,m_{3}m_{1}} &\simeq \frac{1}{\sqrt{4}} \sum_{p=1}^{4} \sum_{LSJ} \langle \text{CB} \rangle \left[\Omega_{2,LSp}^{JJ_{z}} j_{L}(q_{2}y_{p}) + \sum_{L'S'} T_{LS,L'S'}^{J} \Omega_{2,L'S'p}^{JJ_{z}} \frac{\mathrm{e}^{i(q_{2}y_{p} - L'\pi/2)}}{y_{p}} \right] \\ &+ \sum_{L'S'} T_{LS,L'S'}^{J} \Omega_{1,L'S'p}^{JJ_{z}} \frac{\mathrm{e}^{i(q_{1}y_{p} - L'\pi/2 - \eta_{1}\ln(2q_{1}y_{p}) + \sigma_{L'})}}{y_{p}} \right] \end{split}$$

• Relevant amplitude for charge exchange process:

$$M_{m_{3}m_{1}}^{m'_{3}m'_{1}} = \sum_{LSL'S'J} \langle CB \rangle i^{L-L'} e^{i\sigma_{L'}} T_{LS,L'S'}^{J} Y_{L'M'}(\hat{\mathbf{q}}_{1})$$

• PV asymmetry A_z :

$$A_{z} \propto \sum_{m_{3}m'_{3}m'_{1}} \left[|M_{m_{3}+}^{m'_{3}m'_{1}}| - |M_{m_{3}-}^{m'_{3}m'_{1}}| \right] = \cos(\theta) \sum_{n} c_{n} \mathcal{R} \left[\mathbf{T}^{\mathrm{PV}} (\mathbf{T}^{\mathrm{PC}})^{*} \right]_{n}$$

and at zero energy 3 PC and 3 PV T-matrix elements enter:

$$\left(T_{00,00}^{J=0} \ T_{01,01}^{J=1} \ T_{01,21}^{J=1} \right)^{\mathrm{PC}} \qquad \left(T_{00,11}^{J=0} \ T_{01,10}^{J=1} \ T_{01,11}^{J=1} \right)^{\mathrm{PV}}$$

- Express *T*-matrix in terms of (real) *R*-matrix
- Kohn variational principle:

$$\left[R_{LS,L'S'}^{cc';J}\right] = R_{L'S',LS}^{c'c;J} - \langle \psi_{c,LS}^{J} | H - E | \psi_{c',L'S'}^{J} \rangle$$

• HH calculation, major effort by <u>Viviani</u>:

$$\psi_{c,LS}^{J} = \psi_{c,LS}^{J}(\text{HH}) + \psi_{c,LS}^{J}(\text{F}) + \sum_{c',L'S'} R_{LS,L'S'}^{cc';J} \psi_{c',L'S'}^{J}(\text{G})$$

760 keV $\int \frac{1}{p} \frac{1}{p} \frac{1}{p} \frac{1}{q} \frac{$

- Scattering lengths close to exprimental values (preliminary)
- PV *R*-matrix in PT: $(R_{LS,L'S'}^{cc';J})^{\text{PV}} = -\langle \psi_{c,LS}^J | v^{\text{PV}} | \psi_{c',L'S'}^J \rangle$

$A_z \text{ in } \vec{n}\,^3\text{He} \to p\,^3\text{H}$

Viviani and Schiavilla, to be published (2009)

• Preliminary results with $\chi \text{EFT N}^3 \text{LO PC}$ potential [Entem and Machleidt, PRC68, 041001 (2003)]

	$N^{3}LO$
DDH	-0.3971
$DDH-\pi$	+0.0079

 A_z in units of 10^{-7}

- Contribution of π -component is suppressed: model dependence?
- HH calculation with AV18/UIX Hamilltonian not yet fully converged in $J^{\pi}=0^+$ channel

Summary and Outlook

- $A_z(\vec{pp})$ is weakly dependent on input v^{PC} , but sensitive to short-range modeling of v^{PV}
- $A^{\gamma}(\vec{n}p)$ and neutron spin rotation in $\vec{n}d$ scattering provide the "cleanest" determination of h_{π}
- $P^{\gamma}(d\vec{\gamma})$ is strongly affected by short-range modeling of both $v^{\rm PC}$ and $v^{\rm PV}$
- A_z in the *n*-³He charge-exchange process seems to be dominated by the short-range part of v^{PV} (preliminary)
- Outlook:
 - 1. VMC/GFMC studies of \vec{n} - α scattering in progress, and of the \vec{p} - α asymmetry feasible
 - 2. Possibly, HH studies of \vec{n}^{2} H and \vec{n}^{3} He radiative captures