Parity-Violating Effects in Few-Nucleon Systems

Joe Carlson (LANL) Rocco Schiavilla (JLAB/ODU) Alejandro Kievsky (INFN-Pisa) Laura Marcucci (U-Pisa) Michele Viviani (INFN-Pisa)

Mark Paris (JLAB) Ben Gibson (LANL) Virginia Brown (MIT-UMD)

<u>Outline</u>

- A realistic model of strong and electromagnetic interactions in nuclei: an update
- From PV observables to PV interactions in few-nucleon (mostly NN) systems: model dependence
- Effects of hadronic weak interactions in $d(\vec{e}, e')np$ at quasielastic kinematics
- Summary(I)
- Isospin mixing in the nucleon and ⁴He and the PV asymmetry in ⁴He(\vec{e}, e')⁴He
- Summary (II)

Nuclear Interactions

- NN interactions alone fail to predict:
 - 1. spectra of light nuclei
 - 2. Nd scattering
 - 3. nuclear matter $E_0(\rho)$
- 2π -NNN interactions:

EFT w/o explicit Δ 's overestimates strength of $V_{\rm pw}^{2\pi}$

Pandharipande et al., PRC**71**, 064002 (2005)

• $V^{2\pi}$ alone does not fix problems above

Proton-Deuteron Elastic Scattering

Ermisch et al. (KVI collaboration), PRC71, 064004 (2005); Kalantar-Nayestanaki, private communication

Beyond 2π -exchange (IL2 model)

parameters (~ 3) fixed by a best fit to the energies of low-lying states of nuclei with $A \leq 8$

- AV18/IL2 Hamiltonian reproduces well spectra of A=9-12 nuclei
- but needs to be tested in three- and four-nucleon scattering (work by the Pisa group is in progress)
- A_y puzzle in 4-body scattering: strong isospin dependence, discrepancy in ³H-*p* or ³He-*n* much reduced relative to ³He-*p* (Deltuva and Fonseca, PRL98, 162502 (2007) and nucl-th/0703066)

Nuclear Electromagnetic Currents

• Gauge invariant:

$$\mathbf{q} \cdot \left[\mathbf{j}^{(1)} + \mathbf{j}^{(2)}(v) + \mathbf{j}^{(3)}(V^{2\pi}) \right] = \left[T + v + V^{2\pi}, \rho \right]$$

 ρ is the nuclear charge operator

• Terms from static part v_0 of v:

$$\mathbf{j}_{ij}(v_0; \mathbf{leading}) = \mathbf{i} \left(\boldsymbol{\tau}_i \times \boldsymbol{\tau}_j \right)_z \left[v_{\mathbf{PS}}(k_j) \boldsymbol{\sigma}_i \left(\boldsymbol{\sigma}_j \cdot \mathbf{k}_j \right) \right. \\ \left. + \frac{\mathbf{k}_i - \mathbf{k}_j}{k_i^2 - k_j^2} v_{\mathbf{PS}}(k_i) \left(\boldsymbol{\sigma}_i \cdot \mathbf{k}_i \right) \left(\boldsymbol{\sigma}_j \cdot \mathbf{k}_j \right) \right] + i \rightleftharpoons j$$

with $v_{PS} = v^{\sigma\tau} - 2 v^{t\tau}$

however, ${}^{2}H(n,\gamma){}^{3}H$ experimental cross section at thermal energies is overestimated by theory by ≈ 9 %

Constraining PV interactions

- A_z in \vec{pp} scattering
- A^{γ} in $\vec{n}p$ capture and P^{γ} in $d(\vec{\gamma}, n)p$
- Neutron spin rotation in $\vec{n}p$ (and $\vec{n}\alpha$) scattering

Longitudinal Asymmetry in \vec{pp} Scattering

Liu et al., PRC**73**, 065501 (2006); Carlson et al., PRC**65**, 035502 (2002); Driscoll and Miller, PRC**39**, 1951 (1989)

$$A_z = [\sigma(+) - \sigma(-)] / [\sigma(+) + \sigma(-)]$$

= Im [M(S = 0 or 1 \rightarrow S' = 1 or 0)]

M=scattering amplitude

- PC potentials forbid |S S'| = 1 transitions
- A_z is the "nuclear" asymmetry, Coulomb effects need to be included

• DDH model for PV potential:

$$v^{\rm PV} = -\frac{g_{\rho} h_{\rho}^{pp}}{m} \left[(\boldsymbol{\sigma}_1 - \boldsymbol{\sigma}_2) \cdot \left\{ \mathbf{p} , Y_{\rho}(r) \right\} + (1 + \kappa_{\rho}) Y_{\rho}'(r) \boldsymbol{\sigma}_1 \times \boldsymbol{\sigma}_2 \cdot \hat{\mathbf{r}} \right]$$
$$-\frac{g_{\omega} h_{\omega}^{pp}}{m} \left[\rho \to \omega \right]$$

with

$$Y_{\alpha}(r) = \frac{1}{4\pi r} \left[e^{-m_{\alpha}r} - e^{-\Lambda_{\alpha}r} \left[1 + \frac{1}{2} \left(1 - \frac{m_{\alpha}^2}{\Lambda_{\alpha}^2} \right) \Lambda_{\alpha}r \right] \right]$$

- $v^{\rm PV}$ acts only in even J channels: at low and moderate $T_{\rm lab}$ the ${}^{1}{\rm S}_{0}$ - ${}^{3}{\rm P}_{0}$ and ${}^{1}{\rm D}_{2}$ - ${}^{3}{\rm P}_{2}$ are the relevant PV mixings
- EFT version of v^{PV} has same structure, but with Y(r) replaced by ~ δ -function [Zhu *et al.*, NPA**748**, 435 (2005)]

A_z in \vec{pp} Elastic Scattering

$$A^{(J=0)} \sim h^{pp}_{\rho} g_{\rho}(2+\kappa_{\rho}) + h^{pp}_{\omega} g_{\omega}(2+\kappa_{\omega}) A^{(J=2)} \sim h^{pp}_{\rho} g_{\rho} \kappa_{\rho} + h^{pp}_{\omega} g_{\omega} \kappa_{\omega}$$

Strong correlation between h_{ρ}^{pp} and h_{ω}^{pp}

Photon Asymmetry in ${}^{1}\mathrm{H}(\vec{n},\gamma){}^{2}\mathrm{H}$ Radiative Capture

• Measure correlation $a^{\gamma} \cos \theta$ between n spin and γ momentum:

$$a^{\gamma} = -\frac{\sqrt{2} \operatorname{Re} \left(M_{1}^{*} E_{1}\right)}{\mid M_{1} \mid^{2}}$$

with

$$M_1: |^1 S_0; PC \rangle \rightarrow |d; PC \rangle$$
 well known transition

- $E_1: \qquad |{}^3S_1; PC\rangle \rightarrow |d; PV\rangle$ $|{}^3P_1; PV\rangle \rightarrow |d; PC\rangle$
 - ${}^{3}P_{1}$ PV wave functions in d and continuum dominated by v_{π}^{PV} :

$$v_{\pi}^{\mathrm{PV}}(T=0 \rightarrow T=1) = -\mathrm{i} \frac{g_{\pi} h_{\pi}}{\sqrt{2} m} Y_{\pi}'(r) \left(\boldsymbol{\sigma}_{1} + \boldsymbol{\sigma}_{2}\right) \cdot \hat{\mathbf{r}}$$

+ vector meson terms

PC and PV Deuteron Wave Functions

- Large cancellations between asymmetries induced by PV interactions and those due to the associated PV MEC
- Potentially large model dependence is minimized via Siegert evaluation of E_1 :

$$E_1 \sim \omega_\gamma \int \mathrm{d}\mathbf{x} \,\hat{\boldsymbol{\epsilon}} \cdot \mathbf{x} \,\rho(\mathbf{x})$$

	$\sigma^{\gamma}(\mathrm{m})$	$a^{\gamma} \times 10^8$		
Interaction	Impulse Current	Full Current	$\mathrm{DDH}\pi$	DDH
AV18	304.6	332.7	- 4.98	-4.92
BONN	306.5	331.6	- 4.97	-4.89
EXP		$332.6 {\pm} 0.7$???

• In units of h_{π} , $a^{\gamma} \simeq -0.11 h_{\pi}$ in agreement with a number of recent calculations [Desplanques, PLB**512**, 305 (2001); Hyun *et al.*, PLB**516**, 321 (2001)]

Helicity-Dependent Asymmetry in ${}^2\mathrm{H}(\vec{\gamma},n)p$ Photodis integration

In the threshold region ($\simeq 1$ keV above breakup):

$$P^{\gamma} = -\frac{2 \operatorname{Re}\left(M_{1}^{*} \overline{E}_{1}\right)}{\mid M_{1} \mid^{2}}$$

 $\overline{E}_{1}: \qquad | \ d(^{1}\mathbf{P}_{1}); \mathbf{PV} \rangle \rightarrow |^{1}\mathbf{S}_{0}; \mathbf{PC} \rangle$ $| \ d; \mathbf{PC} \rangle \rightarrow |^{3}\mathbf{P}_{0}; \mathbf{PV} \rangle$

- $v_{\pi}^{\rm PV}$ does not contribute
- P^{γ} exhibits large sensitivity to modeling of short range strong and weak NN interactions

 P^{γ} in units of 10^{-8}

	AV18+DDH	BONN+DDH	AV18+DDH π	
Impulse	5.44	9.41	-0.035	
Full	5.19	9.05	-0.037	

• At higher energies, remarks in previous slide remain valid:

Neutron Spin Rotation

• Transmission of a low energy neutron through matter:

$$e^{ipz}|_{\sigma} = e^{ip(z-d)} e^{ipdn_{\sigma}}|_{\sigma}$$

$$n_{\sigma} = 1 + \frac{2\pi \rho}{p^{2}} M_{\sigma}(\theta = 0)$$
PV observable:
$$\sum_{x} = \sum_{y} \sum_{y} \sum_{x} \sum_{y} \sum_{x} \sum_{y} \sum_{y} \sum_{x} \sum_{y} \sum_{y}$$

 $d\phi/dd$ in units of 10^{-9} rad/cm

	DDH	$ ext{DDH}\pi$
AV18	5.09	5.21
BONN	4.63	5.18
Plane waves	-5.67	-6.87

• Earlier study [Avishai and Grange, JPG10, L263 (1984)] finds, incorrectly, the same sign w/ and w/o strong interaction leading term $\sim \langle {}^{3}S_{1} \mid v_{\pi}^{PV} \mid {}^{3}P_{1} \rangle$

Neutron Spin Rotation in ${}^{4}\text{He}$

Pion PV Matrix Element 0.25 0.20 0.15 0.10 0.05 • GFMC <1/2- | V^π | 1/2+ > 0.00 0.04 τ (MeV⁻¹) 0.02 0.06 0.08 $d(\vec{e}, e')np$ at quasielastic kinematics: SAMPLE

Ito et al., PRL92, 102003 (2004)

$$A^{\rm th}(Q^2 = 0.038 \,{\rm GeV/c}) = -2.14 + 0.27 \,G_M^s + 0.76 \,G_{A,T=1}^{(e)}$$
$$A^{\rm th}(Q^2 = 0.091 \,{\rm GeV/c}) = -7.06 + 0.77 \,G_M^s + 1.66 \,G_{A,T=1}^{(e)}$$

$$A = \frac{\left[\begin{array}{c} |f,PC>\\ ,\gamma, \rangle\\ |d,PC> \end{array} \right]^{*} \left[\begin{array}{c} |f,PC>\\ ,\gamma, \rangle\\ |d,PC> \end{array} \right]^{*} + \left[\begin{array}{c} ,\gamma, \rangle\\ |d,PC> \end{array} \right]^{*} + c.c.$$
$$= \frac{\left[\begin{array}{c} |f,PC>\\ ,\gamma, \rangle\\ |d,PC> \end{array} \right]^{2}}{\left[\begin{array}{c} |f,PC>\\ ,\gamma, \rangle\\ |d,PC> \end{array} \right]^{2}}$$
$$= A_{\gamma\gamma} + A_{\gamma z}$$

 $A_{\gamma Z}$ well known, $A_{\gamma \gamma} \sim \overline{\sum}_{i,f} \operatorname{Im} \left[\mathbf{j}_{fi}(\gamma) \times \mathbf{j}_{fi}^*(\gamma) \right]_z \delta(\omega + E_i - E_f)$ $A_{\gamma \gamma}$ (related to P^{γ} at the photon point) originates from:

- 1. Small $| PV \rangle$ components induced by v^{PV} into $| PC \rangle$ states
- 2. $\mathbf{j}_2^{\mathrm{PV}}$ associated with v^{PV}
- 3. anapole contributions: $a(q^2)\overline{u}'(qq^{\sigma}-q^2\gamma^{\sigma})\gamma_5 u/m^2$

$$a(q^2) = \frac{g_\pi h_\pi}{8\sqrt{2}\pi^2} (\alpha_S + \alpha_V \tau_z)$$

with estimates for α_S and α_V from either pion loops (Musolf *et al.*), or the quark model (Riska), or EFT (Maekawa and van Kolck)

$\operatorname{Summary}(I)$

- $A_z(\vec{p}p)$ is weakly dependent on input v^{PC} , but sensitive to short-range modeling of v^{PV}
- $A^{\gamma}(\vec{n}p)$ and, to a less extent, the neutron spin rotation provide the "cleanest" determination of h_{π}
- $P^{\gamma}(d\vec{\gamma})$ is strongly affected by short-range modeling of both $v^{\rm PC}$ and $v^{\rm PV}$
- PV electrodisintegration of the deuteron at quasielastic kinematics probes, almost exclusively, γZ interference on individual nucleons
- Outlook:
 - 1. GFMC studies of \vec{n} and \vec{p} - α scattering
 - 2. Possibly, HH studies of $\vec{n}^{\,2}$ H and $\vec{n}^{\,3}$ He radiative captures

${}^{4}\text{He}(\vec{e},e'){}^{4}\text{He}$ Scattering

$$A_{\rm PV} = -\frac{G_{\mu}Q^2}{4\pi\alpha\sqrt{2}} \frac{\langle^{4}\text{He} \mid j_{\rm NC}^{\mu=0} \mid^{4}\text{He}\rangle}{\langle^{4}\text{He} \mid j_{\rm EM}^{\mu=0} \mid^{4}\text{He}\rangle} \to \frac{G_{\mu}Q^2}{4\pi\alpha\sqrt{2}} 4 s_{W}^{2}$$

where

$$j_{\rm EM}^{\mu=0} = j^{(0)} + j^{(1)}$$

$$j_{\rm NC}^{\mu=0} = -4 s_W^2 j^{(0)} + (2 - 4 s_W^2) j^{(1)} - j^{(s)}$$

• $A_{\rm PV}$ sensitive to $G_E^s(Q^2)$, provided negligible:

1. relativistic corrections (RC) and MEC contributions

- 2. isospin symmetry breaking (ISB) in the nucleon and ${}^{4}\text{He}$
- At low Q^2 , RC+MEC contributions calculated to be tiny^a

^aMusolf, Schiavilla, and Donnelly, PRC**50**, 2173 (1994)

Parameterizing ISB in the nucleon

Dmitrasinović and Pollock, PRC52, 1061 (1995); Kubis and Lewis, PRC74, 015204 (2006)

In terms of the measured $G_E^{p/n} = \langle p/n | j_{\text{EM}}^{\mu=0} | p/n \rangle$:

$$(G_E^p + G_E^n)/2 = G_E^0 + \frac{G_E^1}{E} \qquad (G_E^p - G_E^n)/2 = G_E^1 + \frac{G_E^0}{E}$$

from which

$$G_E^{p,Z} = (1 - 4s_W^2)G_E^p - G_E^n + 2(G_E^{\not l} - G_E^{\not l}) - G_E^s$$
$$G_E^{n,Z} = (1 - 4s_W^2)G_E^n - G_E^p + 2(G_E^{\not l} + G_E^{\not l}) - G_E^s$$

where ISB in G_E^s are ignored: $\langle p|j^{(s)}|p\rangle = \langle n|j^{(s)}|n\rangle \to G_E^s(Q^2)$

Nuclear EM and NC (Vector) Charge Operators

$$\rho^{(\text{EM})}(\mathbf{q}) = G_E^p \sum_{k=1}^Z e^{i\mathbf{q}\cdot\mathbf{r}_k} + G_E^n \sum_{k=Z+1}^A e^{i\mathbf{q}\cdot\mathbf{r}_k} \equiv \rho^{(0)}(\mathbf{q}) + \rho^{(1)}(\mathbf{q})$$

$$\rho^{(0)}(\mathbf{q}) = \frac{G_E^p + G_E^n}{2} \sum_{k=1}^A e^{i\mathbf{q}\cdot\mathbf{r}_k}$$

$$\rho^{(1)}(\mathbf{q}) = \frac{G_E^p - G_E^n}{2} \left(\sum_{k=1}^Z e^{i\mathbf{q}\cdot\mathbf{r}_k} - \sum_{k=Z+1}^A e^{i\mathbf{q}\cdot\mathbf{r}_k}\right)$$

With $G_E^{p/n} \to G_E^{p/n,Z}$, $\rho^{(\text{NC})}(\mathbf{q})$ can be written as

$$\rho^{(\text{NC})}(\mathbf{q}) = -4s_W^2 \rho^{(\text{EM})}(\mathbf{q}) + \frac{2 G_E^{1} - G_E^s}{(G_E^p + G_E^n)/2} \rho^{(0)}(\mathbf{q}) + 2\rho^{(1)}(\mathbf{q}) - \frac{2 G_E^{\emptyset}}{(G_E^p - G_E^n)/2} \rho^{(1)}(\mathbf{q})$$

Up to linear terms in ISB corrections:

$$A_{\rm PV} = \frac{G_{\mu}Q^2}{4\pi\alpha\sqrt{2}} \left[4\,s_W^2 - 2\,\frac{F^{(1)}(q)}{F^{(0)}(q)} - \frac{2\,G_E^{\not l} - G_E^s}{(G_E^p + G_E^n)/2} + \text{RC/MEC} \right]$$

where

$$\langle {}^{4}\mathrm{He}|\rho^{(a)}(\mathbf{q})|{}^{4}\mathrm{He}\rangle/Z \equiv F^{(a)}(q) , \quad a = \mathrm{EM}, 0, 1$$

The HAPPEX collaboration [PRL98, 032301 (2007)] reports: $A_{\rm PV}[Q^2 = 0.077 \ ({\rm GeV/c})^2] = [+6.40 \pm 0.23 \ ({\rm stat}) \pm 0.12 \ ({\rm syst})]$ ppm from which, using $G_{\mu} = 1.16637 \times 10^{-5} \ {\rm GeV}^{-2}$, $\alpha = 1/137.036$, and $s_W^2 = 0.2286$ (with radiative corrections),

$$\Gamma \equiv -2\frac{F^{(1)}(q)}{F^{(0)}(q)} - \frac{2G_E^{1} - G_E^{s}}{(G_E^p + G_E^n)/2} = 0.010 \pm 0.038$$

ISB Corrections (I): Nucleon

Kubis and Lewis, PRC74, 015204 (2006)

Up to NLO in ChPT:

1. Loop effects due $\Delta m = m_n - m_p$

2. A single counterterm, fixed by resonance saturation

Kubis and Lewis, PRC74, 015204 (2006)

$$\begin{aligned} G_{E}^{I}(Q^{2}) &= -\frac{g_{A}^{2}m_{N}\Delta m}{F_{\pi}^{2}} \Biggl\{ \frac{M_{\pi}}{m_{N}} \Bigl[\overline{\gamma}_{0}(-Q^{2}) - 4\overline{\gamma}_{3}(-Q^{2}) \Bigr] \\ &- \frac{Q^{2}}{2m_{N}^{2}} \Biggl[\xi(-Q^{2}) - \frac{M_{\pi}}{m_{N}} \Bigl[\overline{\gamma}_{0}(-Q^{2}) - 5\overline{\gamma}_{3}(-Q^{2}) \Bigr] \\ &- \frac{1}{16\pi^{2}} \Biggl(1 + 2\log\frac{M_{\pi}}{M_{V}} - \frac{\pi(\kappa^{v} + 6)M_{\pi}}{2m_{N}} \Biggr) \Biggr] \Biggr\} \\ &+ \frac{g_{\omega}F_{\rho}\Theta_{\rho\omega}Q^{2}}{2M_{V}(M_{V}^{2} + Q^{2})^{2}} \Biggl(1 + \frac{\kappa_{\omega}M_{V}^{2}}{4m_{N}^{2}} \Biggr) \end{aligned}$$

• $\overline{\gamma}_0, \overline{\gamma}_3$, and ξ are loop functions: $\propto Q^2$ as $Q^2 \to 0$

• Largest uncertainty in ω tensor coupling κ_{ω}

- Band provides an estimate of higher order ChPT corrections as well as of uncertainties in vector-meson couplings
- At $Q^2 = 0.077 \; (\text{GeV/c})^2$:

$$-\frac{2\,G_E^{\not l}}{(G_E^p + G_E^n)/2} = 0.008 \pm 0.003$$

ISB Corrections (II): ⁴He Nucleus

Nuclear ISB Hamiltonian: $H_{\rm ISB} = H_{\rm C} + H_{\rm CD/CA} + H_{\rm EM} + K_{\Delta}$

- $H_{\rm C}$ from (point) Coulomb interaction
- $H_{\rm CD/CA}$ from CD and CA strong-interactions
- $H_{\rm EM}$ from remaining EM interactions (magnetic moments, ...)
- K_{Δ} from *n*-*p* mass difference in kinetic energy

ISB term (AV18)	$P^{(1)}$ %	$P^{(2)} \%$				
$H_{ m C}$	1.5×10^{-3}	0.1×10^{-3}				
$H_C + H_{\rm CD/CA}$	3.0×10^{-3}	4.9×10^{-3}				
$H_C + H_{\rm CD/CA} + H_{\rm EM}$	2.8×10^{-3}	5.2×10^{-3}				

Viviani, Kievsky, and Rosati, PRC71, 024006 (2005)

Contributions of ISB terms to isomultiplet energies (keV)

			. ~ .			(
Piener	Pandharipande	Wiringa	and Carlson	PRC64	014001	(2001)
r ropor,	i ananaripanao,	winninga,	and Caribon,	1 1 0 0 1	011001	(2001)

A	T	n	K_{Δ}	H_{C}	H_{EM}	$H_{\rm CD/CA}$	ТОТ	EXP
3	1/2	1	14(0)	649(1)	29(0)	64(0)	757(1)	764
6	1	1	16(0)	1091(5)	18(0)	47(1)	1172(6)	1173
8	1	1	23(0)	1686(5)	24(0)	76(1)	1810(6)	1770
6	1	2		166(1)	19(0)	107(13)	293(13)	223
8	1	2		141(1)	4(0)	-3(8)	143(8)	145

• Good overall agreement between theory and experiment

- Weak model dependence
- $F^{(1)}$ scales as $\approx \sqrt{P^{(1)}}$; RC/MEC small at low $q \ (\leq 1.5 \ \text{fm}^{-1})$
- $F^{(1)}/F^{(0)} \approx -0.00157$ from AV18/UIX and CDB/UIXb

Summary(II)

Using: i) $-2 G_E^{1/2} / [(G_E^p + G_E^n)/2] \approx 0.008$ for hadronic ISB ii) $-2 F^{(1)}(q) / F^{(0)}(q) \approx 0.00314$ for nuclear ISB

in

$$\Gamma \equiv -2\frac{F^{(1)}(q)}{F^{(0)}(q)} - \frac{2G_E^{\not l} - G_E^s}{(G_E^p + G_E^n)/2} = 0.010 \pm 0.038$$

gives $G_E^s \left[Q^2 = 0.077 \left(\text{GeV/c} \right)^2 \right] = -0.001 \pm 0.016$

- Measuring ISB admixtures? (arguably ... error on Γ too large!)
- $G_E^s \left[Q^2 = 0.1 \left(\text{GeV/c} \right)^2 \right] = +0.001 \pm 0.004 \pm 0.003$ estimated by using LQCD input [Leinweber *et al.*, PRL97, 022001 (2006)]
- At this level, contributions to A_{PV} induced by PV components in the nuclear potentials need to be studied (competitive with ISB?)