Light Nuclei from keV to GeV Energies: a Review

Rocco Schiavilla (JLab/ODU)

- Strong and electromagnetic interactions in nuclei
- Relativistic descriptions of few-nucleon dynamics
- Tensor forces and ground-state structure
- Inferring nucleon properties from nuclear experiments
- Summary(ies)
- Future prospects

In collaboration with:

- J. Carlson A. Kievsky
- M. Viviani S. Pieper

L. Marcucci K. Nollett R. Wiringa

Nuclear Interactions and Currents: an Update

Nuclear Interactions

- *NN* interactions alone fail to predict:
 - 1. spectra of light nuclei
 - 2. Nd scattering
 - 3. nuclear matter $E_0(\rho)$

• 2π -NNN interactions [EFT w/o explicit Δ 's overestimates strength of $V_{pw}^{2\pi}$, Pandharipande *et al.*, PRC**71**, 064002 (2005)]:

• $V^{2\pi}$ alone does not fix problems above

Proton-Deuteron Elastic Scattering

Ermisch et al. (KVI collaboration), PRC71, 064004 (2005)

Kalantar-Nayestanaki, private communication

Beyond 2π -exchange (IL2 model, with important T = 3/2 terms)

$$V^{2\pi} + A^{3\pi} \left[+ A^{3\pi} + A^{3\pi}$$

parameters (~ 3) fixed by a best fit to the energies of low-lying states (~ 17) of nuclei with $A \leq 8$ (IL2 presently under revision ...) AV18/IL2 Hamiltonian reproduces well:

- spectra of A=9-12 nuclei (attraction provided by IL2 in T=3/2 triplets crucial for *p*-shell nuclei)
- low-lying *p*-wave resonances with $J^{\pi}=3/2^{-}$ and $1/2^{-}$ respectively, as well as low-energy *s*-wave $(1/2^{+})$ scattering

<u>but</u> needs to be tested in three- and four-nucleon scattering (work by the Pisa group is in progress)

Nuclear Electromagnetic Currents

Marcucci et al., PRC72, 014001 (2005)

• Gauge invariant:

$$\mathbf{q} \cdot \left[\mathbf{j}^{(1)} + \mathbf{j}^{(2)}(v) + \mathbf{j}^{(3)}(V^{2\pi}) \right] = \left[T + v + V^{2\pi}, \rho \right]$$

 ρ is the nuclear charge operator

• Terms from static part v_0 of v (and $V^{2\pi}$) assumed to arise from pion-like (PS) and rho-like (V) exchanges:

$$\mathbf{j}_{ij}(v_0; \mathbf{PS}) = \mathbf{i} \left(\boldsymbol{\tau}_i \times \boldsymbol{\tau}_j \right)_z \left[v_{\mathbf{PS}}(k_j) \boldsymbol{\sigma}_i \left(\boldsymbol{\sigma}_j \cdot \mathbf{k}_j \right) \right. \\ \left. + \frac{\mathbf{k}_i - \mathbf{k}_j}{k_i^2 - k_j^2} v_{\mathbf{PS}}(k_i) \left(\boldsymbol{\sigma}_i \cdot \mathbf{k}_i \right) \left(\boldsymbol{\sigma}_j \cdot \mathbf{k}_j \right) \right] + i \rightleftharpoons j$$

with $v_{PS} = v^{\sigma\tau} - 2 v^{t\tau}$

• Terms from velocity-dependent part v_1 of v by minimal substitution: $\mathbf{p}_i \to \mathbf{p}_i - e \mathbf{A}(\mathbf{r}_i)$

•
$$\mathbf{j}^{(2)}(v)$$
 satisfies:

$$\mathbf{j}^{(2)}(\mathbf{v}) \xrightarrow{\mathbf{n}} \mathbf{n} + \frac{\pi}{\mathbf{n}} \mathbf{n}$$

• however, theory overpredicts ${}^{2}\text{H}(n,\gamma){}^{3}\text{H}$ and ${}^{3}\text{He}(n,\gamma){}^{4}\text{He}$ x-sections at thermal energies by 9% and $\approx 30\%$ respectively

• diffraction region in F_M^V "problematic" for theory: similar trend seen in deuteron threshold *e*-disintegration

(Arriaga and Schiavilla, arXiv:0704.2514, PRC in press)

Summary (I)

- Energy spectra and n- α scattering well described by two- and three-nucleon interactions (AV18/IL2)
- 3N and 4N scattering as a crucial testing ground for three-nucleon interactions (tests of IL2 are in progress)
- Constructed current (and charge) operators, which reproduce well a variety of light-nuclei EM observables (charge f.f.'s, inclusive (e, e') and exclusive (e, e'p) responses, ...)
- <u>But</u> a few discrepancies persist: nd (and n^{3} He) radiative capture(s), diffraction region in $F_{M}^{V}(q), \ldots$

Approaches to Relativistic Dynamics

Hamiltonian Dynamics

(Instant-form) Hamiltonian dynamics [Krajcik and Foldy, PRD10, 1777 (1974); Carlson, Pandharipande, and Schiavilla, PRC47, 484 (1993)]:

$$H = \sum_{i} \sqrt{\mathbf{p}_{i}^{2} + m^{2}} + \sum_{i < j} \left[\mathbf{v}_{ij} + \delta \mathbf{v}_{ij}(\mathbf{P}_{ij}) \right] + \dots$$

- v is the rest frame interaction (fitted to NN data)
- $\delta v(\mathbf{P})$ ("boost interaction") depends on pair momentum \mathbf{P} , and is determined from v via (Poincaré group) $\left[\hat{\mathbf{K}}, \hat{H}\right] = i \hat{\mathbf{P}}$:

$$\delta \boldsymbol{v}(\mathbf{P}) = -\frac{P^2}{8m^2} \boldsymbol{v} + \frac{i}{8m^2} [\mathbf{P} \cdot \mathbf{r} \, \mathbf{P} \cdot \mathbf{p} \,, \, \boldsymbol{v}] + \frac{i}{8m^2} [(\boldsymbol{\sigma}_i - \boldsymbol{\sigma}_j) \times \mathbf{P} \cdot \mathbf{p} \,, \, \boldsymbol{v}]$$

• Boosting (two-body, for example) states from the rest frame to a frame moving with velocity β :

$$\psi_{\boldsymbol{\beta}}(\mathbf{p}) = \frac{1}{\sqrt{\gamma}} \left[1 - \frac{i}{4m} \boldsymbol{\beta} \cdot (\boldsymbol{\sigma}_i - \boldsymbol{\sigma}_j) \times \mathbf{p} \right] \psi_0(\mathbf{p}_{\parallel}/\gamma, \mathbf{p}_{\perp})$$

Spectator Formalism

Spectator formalism, aka Gross equation^a: explicit N and \overline{N} d.o.f. (consequently, deuteron develops P-wave components)

• Bound state obtained from:

• v is a high-quality ($\chi^2=1$) OBE model with effective I=0 and 1, $J^{\pi}=0^+, 0^-, 1^-$ exchanges; it includes off-shell couplings^b:

scalar vertex = $g_S - \nu_S \left[(m - p)/(2m) + (m - k)/(2m) \right]$

- v reproduces $E_0({}^{3}\text{H})$: crucial off-shell couplings simulate NNN interaction effects^b
- Boosts are kinematical and exactly accounted for

^aGross, PR186, 1448 (1969); ^bGross and Stadler, arXiv:0704.1229 and PRL78, 26 (1997)

Hamiltonian dynamics (HD): Schiavilla and Pandharipande, PRC65, 064009 (2002)

Spectator formalism (SF): Van Orden, Devine, and Gross, PRL75, 4369 (1995), older OBE model

• HD and SF represent drastically different approaches, yet lead to equally satisfactory description of e-d elastic scattering

Tensor Forces and Ground-State Structure

Preeminent features of v_{ij} :

- short-range repulsion (common to many systems)
- intermediate- to long-range tensor character (unique to nuclei)

- Hole due to short-range repulsion, angular confinement due to tensor force
- Size of torus: $d \simeq 1.4$ fm, $t \simeq 0.9$ fm (at \approx half-max density)
- Confirmed by e-d elastic scattering measurements

Two-Nucleon Density Profiles in $T,S\neq\!0,\!1$ States

- Scaling persists in T, S=1,0 channel (quasibound ${}^{1}S_{0}$ state) for $r \leq 2$ fm
- But <u>no scaling</u> occurs in remaining channels (interaction either repulsive or weakly attractive)

Experimental Evidence for Tensor Correlations in A > 2 Nuclei

While many nuclear properties are affected by tensor correlations, their effects are generally subtle, and not easily isolated in data

For example, absence of stable A=8 nuclei:

- 1. $AV4' = [1, \sigma_1 \cdot \sigma_2] \otimes [1, \tau_1 \cdot \tau_2]$
- 2. AV6' = AV4'+tensor
- 3. $AV8' = AV6' + \text{spin-orbit}, \dots$

New Opportunities for Observing Tensor Correlations

np and pp pairs predominantly in deuteron-like and ${}^{1}S_{0}$ states: large differences between np- and pp-pair momentum distributions

Schiavilla, Wiringa, Pieper, and Carlson, PRL98, 132501 (2007)

Two-Nucleon Knockout Processes and Tensor Correlations

- JLab measurements on ${}^{12}C(e, e'pp)^{a}$ and $(e, e'np)^{b}$
- Analysis of ${}^{12}C(p, pp)$ and (p, ppn) BNL data^c
- Possibly also seen in π -absorption: $\sigma(\pi^-, np) / \sigma(\pi^+, pp) \ll 1^d$

Nucleon Properties from Nuclear Experiments

Medium-Modified p f.f.: the ${}^{4}\text{He}(\vec{e}, e'\vec{p}){}^{3}\text{H}$ process

- In PWIA: $P'_x/P'_z \propto (G_{Ep}/G_{Mp})$
- FSI effects and MEC contributions explain measured ratio: no in medium modification is required

Schiavilla, Benhar, Kievsky, Marcucci, and Viviani, PRL94, 072303 (2005)

Parity-Violating ⁴He (\vec{e}, e') ⁴He Scattering and G_E^s

$$A_{\rm PV} = \frac{G_{\mu}Q^2}{4\pi\alpha\sqrt{2}} \left[4\sin^2\theta_W - 2\frac{F^{(1)}(q)}{F^{(0)}(q)} - \frac{2\frac{G_E^{\not l} - G_E^s}{(G_E^p + G_E^n)/2} + \text{RC/MEC} \right]$$

- G_E^{1} parameterizes <u>nucleonic</u> isospin symmetry breaking (ISB): $(G_E^p + G_E^n)/2 = G_E^0 + G_E^1, G_E^1$ obtained up to NLO in ChPT^a
- $F^{(1)}$ <u>nuclear</u> ISB, would vanish if $|^{4}\text{He}\rangle$ pure T=0 state
- At low Q^2 , RC/MEC contributions calculated to be tiny^b

- Nuclear ISB: i) EM interactions (Coulomb, ...), ii) *n-p* mass difference in kinetic energy, and iii) CD/CA strong interactions
- Calculated A=3-8 isomultiplet energies in good agreement with experiment [Pieper, Pandharipande, Wiringa, and Carlson, PRC64, 014001 (2001)]

Viviani et al., nucl-th 0703051

 $-2 \frac{G_E^{1}}{F} / [(G_E^p + G_E^n)/2] \approx 0.008 \text{ and } -2 \frac{F^{(1)}(q)}{F^{(0)}(q)} \approx 0.00314 \text{ in}$ HAPPEX $A_{\rm PV}$ give $G_E^s [Q^2 = 0.077 ({\rm GeV/c})^2] = -0.001 \pm 0.016$

Summary (II)

- Conventional nuclear effects explain suppression of $(P'_x/P'_z)_{^4\mathrm{He}}$
- Present and Coulomb sum rule analysis indicate no in-medium modification for G_{Ep} and G_{Mp}

Carlson, Jourdan, Schiavilla, and Sick, PLB553, 191 (2003)

- $|G_E^s| \lesssim |\text{ISB}|$: measuring ISB admixtures?
- Inferred G_E^s consistent (in magnitude!) with estimate obtained by using LQCD input [Leinweber *et al.*, PRL97, 022001 (2006)]

<u>New Frontiers</u>

- NN interactions only (for the time being)
- A_y puzzle in 4-body scattering: strong isospin dependence, theory underestimate in ³He-p (T=1) much reduced relative to ³He-n and ³H-p (T=0 and T=1 superpositions)

Auxiliary-Field-Diffusion-Monte-Carlo (AFDMC) calculations of nuclear matter and of $A \leq 40$ nuclei

Gandolfi, Pederiva, Fantoni, and Schmidt, PRL98, 102503 (2007); arXiv:0704.1774

- In AFDMC spin-isospin variables are sampled <u>rather than</u> summed over explicitly as in GFMC
- <u>Power-law</u> rather than <u>exponential</u> growth with A (¹²C GFMC calculations presently require $\simeq 70,000$ processor hours)