Semi-leptonic weak processes in two-nucleon systems

Impact on neutrino oscillation experiments and astrophysics

Satoshi Nakamura (JLab)

Collaborators

Toru Sato	(Osaka Univ.)	u d, supernova
Kuniharu Kubodera	(U. South Carolina)	u d
Vladimir Gudkov	(U. South Carolina)	u d
Kohsuke Sumiyoshi	(Numazu Coll. Tech.)	supernova

Introduction

Electroweak processes in few-nucleon systems

 \Rightarrow well-established calculational method

 $\langle \psi_f | H_{\rm ew} | \psi_i \rangle$

 $|\psi\rangle$: solution of Schröding eq. with high-precision NN (+ NNN) potential

 $H_{\rm ew}$: impulse + meson exchange currents

review : Carlson and Schiavilla, Rev. Mod. Phys. 70, 743841 (1998) cf. chiral effective field theory Contribution to neighborhood (neutrino physics, astrophysics)

* Experiment at Sudbury Neutrino Observatory (SNO) (part 1)

(part 2)

 $\nu_e + d \rightarrow e^- + p + p$ (νd reaction)

* Supernova simulation

 νd reaction

 $p + p \rightarrow d + e^+ + \nu_e$ (*pp*-fusion)

 $N + N \rightarrow N + N + \nu + \bar{\nu}$ (*NN*-bremsstrahlung)

* Solar model

pp-fusion

Part 1

SNO experiment (neutrino oscillation, solar neutrino problem)

heavy water Cherenkov light detector :

$$\nu_e + d \rightarrow e^- + p + p \quad (CC)$$
 $\nu_x + d \rightarrow \nu_x + p + n \quad (NC)$
 $x = e, \mu, \tau$

Solar neutrino fluxes of ν_e and $\sum_x \nu_x$ are separately measured.

Theoretical prediction for νd reaction is prerequisite !

Previous work

Uncertainty

- Ying *et al.* (IA) $\sim 10\%$ (muon capture exp.)
- Kubodera *et al.* (IA+EXC) a few%

What we do SN et al., PRC **63**, 034617 (2000); NPA **707**, 561 (2002)

- Confirm the previous work
- Recent high-precision NN potential (AV18, CD-Bonn, Nijmegen)
- Exchange axial-vector current tested by tritium β -decay rate

 \longrightarrow significant reduction of theoretical uncertainty ($\sim 1\%$)

• Differential cross section

Interaction Hamiltonian

$$H_W^{CC} = \frac{G'_F V_{ud}}{\sqrt{2}} \int d\boldsymbol{x} [J_\lambda^{CC}(\boldsymbol{x}) L^\lambda(\boldsymbol{x}) + \text{h. c.}] \quad \text{for CC}$$

$$H_W^{NC} = \frac{G'_F}{\sqrt{2}} \int d\boldsymbol{x} [J_\lambda^{NC}(\boldsymbol{x}) L^\lambda(\boldsymbol{x}) + h. c.] \quad \text{for NC}$$

 $L^{\lambda}(\boldsymbol{x}) = \bar{\psi}_{l}(\boldsymbol{x}) \gamma^{\lambda} (1 - \gamma^{5}) \psi_{\nu}(\boldsymbol{x})$

Nuclear Current

$$J_{\lambda}^{CC}(\boldsymbol{x}) = V_{\lambda}^{\pm}(\boldsymbol{x}) + A_{\lambda}^{\pm}(\boldsymbol{x})$$
$$J_{\lambda}^{NC}(\boldsymbol{x}) = V_{\lambda}^{3} - 2\sin^{2}\theta_{W}(V_{\lambda}^{3} + V_{\lambda}^{s}) + A_{\lambda}^{3}$$

V(A) : Vector (Axial) current

 V^s : Isoscalar vector current

 θ_W : Weinberg Angle $\sin^2 \theta_W = 0.23$

 J_{λ} = (one-body current) + (two-body exchange current)

Impulse Approximation (IA) Current

$$\langle p' | V_{\lambda}(0) | p \rangle = \bar{u}(p') \left[f_V \gamma_{\lambda} + i \frac{f_M}{2M_N} \sigma_{\lambda\rho} q^{\rho} \right] u(p)$$

$$\langle p' | A_{\lambda}(0) | p \rangle = \bar{u}(p') \left[f_A \gamma_{\lambda} \gamma^5 + f_P \gamma^5 q_{\lambda} \right] u(p)$$

$$q_{\lambda} \equiv p'_{\lambda} - p_{\lambda}$$

$$f_M$$
 : CVC f_P : PCAC

$$f_A(q_\mu^2) = -g_A \left(1 - \frac{q_\mu^2}{1.04 \,[\text{GeV}^2]}\right)^{-2}, \quad g_A = 1.2670 \pm 0.0030 \text{ (PDG)}$$

Exchange axial-vector current

- Fit $AN\Delta$ coupling to tritium β -decay rate
- Rigorous three-body calculation

Why tritium β decay?

 νd : Gamow-Teller ($^3S_1 \rightarrow {}^1S_0$) \Rightarrow \mathbf{A}_{EXC} is main correction

 $^{3}\mathrm{H}$: Fermi ($^{1}S_{0} \
ightarrow \ ^{1}S_{0}$) & Gamow-Teller

Schiavilla et al., PRC58,1263(1998)

Results

- $d \rightarrow^1 S_0$ dominance in low-energy region
- confirmation of the past work

\mathbf{A}_{EXC} contribution

- $\bullet~2\%$ contribution of $\mathbf{A}_{\mathrm{EXC}}$
- $\bullet~0.2\%$ model dependence on \mathbf{A}_{EXC} (insensitive to detailed structure)

Comparison with EFT results

• EFT* (Ando *et al.*, PLB **555**, 49 (2003))

$\sigma(EFT^*)/\sigma(this\;work)$				
$E_{ u}$ (MeV)	$\nu_e d \to e^- pp$	$\nu d \rightarrow \nu p n$		
5	1.003	1.004		
10	1.001	1.003		
20	0.998	1.001		

• KSW-counting scheme (Butler *et al.*, PRC **63**, 035501 (2001))

1% level agreement if $L_{1,A}$ is appropriately chosen

SNO result

PRL 89, 011301 (2002)

- Strong evidence for neutrino oscillation
- Long-standing solar neutrino problem resolved
- Theoretical νd cross sections played essential role

Summary for Part 1 : νd reactions

- * confirmation of existing work
- * update
 - high-precision NN-potential (AV18, CD-Bonn, Nijmegen)
 - exchange axial-vector current tested by tritium β -decay rate
- * differential cross sections
- * theoretical uncertainty : $\delta\sigma_{\nu d} \lesssim 1\%$ (A_{EXC} , NN-model, etc.)
- * good agreement with EFT results (< 1%)

Part 2

Neutrino-deuteron reaction as heating mechanism in Supernova

SN et al., PRC 80, 035802 (2009)

In most simulations, supernova doesn't explode !

 \Rightarrow extra assistance needed for re-accelerating shock-wave

- * neutrino absorption on <u>nucleon</u> (main)
- * neutrino scattering or absorption on <u>nuclei</u> (extra agent)

\ast 4 He, 56 Fe	Haxton, PRL 60, 1999 (1988)	
	\Rightarrow small effect on supernova dynamics	

* ³He, ³H O'Connor et al. PRC 75, 055803 (2007) more effective heating than ⁴He Arcones et al. PRC 78, 015806 (2008) $\bar{\nu}$ spectrum can be changed

* deuteron ?

can be abundant in supernova, $\sigma_{\nu d} \gg \sigma_{\nu^3 {
m He}}, \sigma_{\nu^3 {
m H}}$

Abundance of light elements in supernova

Sumiyoshi and Röpke, PRC 77, 055804 (2008)

* Nuclear statistical equilibrium is assumed

Quantities of interest for supernova

Thermal average of energy transfer cross section

$$\langle \sigma \omega \rangle_{T_{\nu}} = \int dE_{\nu} f(T_{\nu}, E_{\nu}) \sigma \omega(E_{\nu})$$

Fermi-Dirac distribution for the neutrino

$$f(T_{\nu}, E_{\nu}) = \frac{N}{T_{\nu}^3} \frac{E_{\nu}^2}{e^{E_{\nu}/T_{\nu}} + 1}$$

Energy transfer cross section for CC (absorption)

$$\sigma\omega(E_{\nu}) = \int dE'_l \frac{d\sigma}{dE'_l} E_{\nu}$$

for NC (scattering)

$$\sigma\omega(E_{\nu}) = \int dE'_{\nu} \frac{d\sigma}{dE'_{\nu}} (E_{\nu} - E'_{\nu})$$

Only neutrino is treated separately, others are regarded as matter

Results

Neutrino-deuteron cross sections

* $\sigma(\nu d \ CC) \sim \sigma(\nu N \ CC)/3$ at $E_{\nu} = 10 \text{ MeV}$ * $\sigma(\nu d \ CC) \sim \sigma(\nu N \ CC)/2$ at $E_{\nu} = 50 \text{ MeV}$

 $*\sigma(ext{elastic} \
u d)$ is very small

 \ast Main contribution is from E_{ν} = 20 (60) MeV for T_{ν} = 5 (10) MeV

* High energy tail of $\sigma\omega\times f$ is appreciable

Thermal average of energy transfer cross section

 $* < \sigma \omega >$ for the deuteron is much larger than those of ³H, ³He, ⁴He

* Small binding energy \Rightarrow rapid increase of $< \sigma \omega >$ at low T_{ν}

$$* < \sigma \omega >_{\nu_e d} / < \sigma \omega >_{\nu_e N} \sim 0.44$$
 at $T_{\nu_e} = 5$ MeV
 $* < \sigma \omega >_{\nu_\mu d} / < \sigma \omega >_{\nu_e N} \sim 0.25$ at $T_{\nu_e} = 5$ MeV and $T_{\nu_\mu} = 10$ MeV

Neutrino emissivity from deuteron (in progress)

Emission of neutrino in supernova

- * cooling of matter (99% of total cooling)
- * flux and spectrum of neutrino (SN1987A)
- * neutrino heating

Abundance of light elements on surface of protoneutron star

 \Rightarrow Careful consideration of $\underline{\nu}$ -emission from deuteron (and other light nuclei)

 $\nu\text{-}\mathrm{emission}$ previously considered

$$\begin{array}{ll} * & p+e^- \rightarrow n+\nu_e \\ * & n+e^+ \rightarrow p+\bar{\nu}_e \\ * & n+n \rightarrow p+n+e^-+\bar{\nu}_e \\ * & p+p \rightarrow p+n+e^++\nu_e \end{array}$$

 $N+N
ightarrow N+N+
u+ar{
u}$ dominant source of $u_{\mu},
u_{ au}$ *

cooling of neutron star

	u-emission previously considered	Other, possibly significant processes
*	$p + e^- \rightarrow n + \nu_e$	$d + e^- \to n + n + \nu_e$
*	$n + e^+ \to p + \bar{\nu}_e$	$\frac{d}{d} + e^+ \to p + p + \bar{\nu}_e$
*	$n + n \rightarrow p + n + e^- + \bar{\nu}_e$	$n+n \to \mathbf{d} + e^- + \bar{\nu}_e$
*	$p + p \rightarrow p + n + e^+ + \nu_e$	$p + p \rightarrow d + e^+ + \nu_e$
*	$N+N \to N+N+\nu+\bar{\nu}$	$p + n \rightarrow d + \nu + \bar{\nu}$

Previous calculation of bremsstrahlung : IA, Born Approx. \Rightarrow Full calculation

Emissivity Q

for, e.g., $N_1+N_2
ightarrow N_1'+N_2'+
u+ar{
u}$

$$Q = \int \frac{d\boldsymbol{p}_{N_1}}{(2\pi)^3} \frac{d\boldsymbol{p}_{N_2}}{(2\pi)^3} \frac{d\boldsymbol{p}_{N_1'}}{(2\pi)^3} \frac{d\boldsymbol{p}_{N_2'}}{(2\pi)^3} \frac{d\boldsymbol{p}_{\nu}}{(2\pi)^3} \frac{d\boldsymbol{p}_{\bar{\nu}}}{(2\pi)^3} \\ \times (2\pi)^4 \delta^{(4)}(p_f - p_i) \sum_{spin} |M|^2 F_{N_1} F_{N_2} (1 - F_{N_1'}) (1 - F_{N_2'})$$

 F_N : nucleon distribution function

Total cross sections for $pp \to pne^+\nu_e$, $pp \to de^+\nu_e$

* Much larger cross section for $pp
ightarrow de^+
u_e$

 $*\,A_{EXC}$ increases σ by 5, 20, 30% at T_{pp} = 10, 50, 100 MeV

Summary for Part 2 : ν heating and emissivity in supernova

Abundance of light elements in supernova

 \Rightarrow Careful consideration of ν -emission and absorption on the light elements

Deuteron can play an important role !

* ν -heating much more effective than A=3,4 nuclei

* $\sigma(NN \to d\nu\bar{\nu})$ (emissivity) much larger than $\sigma(NN \to NN\nu\bar{\nu})$

 \Rightarrow Supernova simulation with mixture of light elements and ν -nucleus interactions