Transverse Momentum Distributions of Quarks in the Nucleon from Lattice QCD

Bernhard Musch

in collaboration with Philipp Hägler (TUM), John Negele (MIT), Andreas Schäfer (Univ. Regensburg), and the LHP Collaboration

- appears flat like a disk (Lorentz contraction),
- intrinsic motion of quarks inside the nucleon.

- appears flat like a disk (Lorentz contraction),
- intrinsic motion of quarks inside the nucleon.

- appears flat like a disk (Lorentz contraction),
- intrinsic motion of quarks inside the nucleon.

- appears flat like a disk (Lorentz contraction),
- intrinsic motion of quarks inside the nucleon.

- \Longrightarrow quark distributions with respect to
 - momentum fraction xof the nucleon momentum P, \Rightarrow PDFs
 - transverse position b_{\perp} (impact parameter), \Rightarrow GPDs
 - intrinsic transverse momentum k_{\perp} . \Rightarrow TMD PDFs

Charge density $\rho(\boldsymbol{b}_{\perp})$

"Nucleon tomography"

spatial image of the nucleon

has been successfully calculated using GPDs from lattice QCD.

- \implies quark distributions with respect to
 - momentum fraction x of the nucleon momentum P,
 - transverse position b_{\perp} (impact parameter),
 - intrinsic transverse momentum k_{\perp} .

new: lattice study of

TMD PDFs

 $\begin{array}{l} {\bf transverse \ momentum \ dependent} \\ {\bf parton \ distribution \ functions} \end{array}$

e.g., $f_1(x, k_{\perp}^2)$

 \Rightarrow quark density $\rho(\mathbf{k}_{\perp})$.

- \implies quark distributions with respect to
 - momentum fraction x of the nucleon momentum P,
 - transverse position b_{\perp} (impact parameter), \Rightarrow
 - intrinsic transverse momentum k_{\perp} .

PDFs

GPDs

unpolarized \boldsymbol{k}_{\perp} -dependent quark density

Density of unpolarized quarks (minus antiquarks) in an unpolarized nucleon as a function of transverse momentum k_{\perp} :

 $\begin{pmatrix} m_{\pi} \approx 500 \text{ MeV}, \text{ straight gauge link operator,} \\ renormalization condition <math>C^{\text{ren}} = 0$, Gaussian fit $\end{pmatrix}$

a polarized k_{\perp} -dependent quark density

Density of quarks with positive helicity, $\lambda = 1$, in a transversely polarized nucleon, $S_{\perp} = (1, 0)$:

$$\rho_{TL}(\mathbf{k}_{\perp}; \mathbf{S}_{\perp}, \lambda) \equiv \frac{1}{2} \int dx \int dk^{-} \Phi^{[\gamma^{+}\frac{1}{2}(1+\gamma^{5})]}(k, P, S_{\perp})$$
$$= \frac{1}{2} f_{1}^{(0_{x})}(\mathbf{k}_{\perp}^{2}) + \frac{\lambda}{2} \frac{\mathbf{k}_{\perp} \cdot \mathbf{S}_{\perp}}{m_{N}} g_{1T}^{(0_{x})}(\mathbf{k}_{\perp}^{2})$$

QCD: theory of quarks and gluons

action

$$S_{\text{QCD}}[\overline{q}, q, A] = \int d^4x \left\{ \overline{q} (i\gamma^{\mu} D_{\mu} - m)q \right\} + S_{\text{gauge}}[A]$$

 $\begin{array}{l} q, \bar{q} \text{: quark fields,} \\ A_{\mu} \text{ : gluon fields ("gauge fields"),} \\ D_{\mu} = \partial_{\mu} - igA_{\mu} \end{array}$

path integral

$$\left\langle\!\!\left\langle O[\bar{q},q,A]\right\rangle\!\!\right\rangle = \frac{\int \mathcal{D}\bar{q}\,\mathcal{D}q\,\mathcal{D}A\,O[\bar{q},q,A]\,\exp(iS_{\rm QCD})}{\int \mathcal{D}\bar{q}\,\mathcal{D}q\,\mathcal{D}A\,\exp(iS_{\rm QCD})}$$

QCD on the lattice

periodic/antiperiodic lattice $L \times L \times L \times T$

gluon fields as "links variables" $U_{\mu}(x) = \exp(igaA_{\mu}(x))$

derivatives \rightarrow finite differences $\partial_{\mu}q(x) \approx \frac{q(x+ae_{\mu}) - q(x-ae_{\mu})}{2a}$

- Wick rotation: $x^0 \to -ix^4$ \Rightarrow Euclidean space, $iS_{\text{QCD}} \to -S_{\text{lat}}$ (real)
- integrate out fermions q, \bar{q} analytically:

$$\left\langle\!\!\left\langle O\right\rangle\!\!\right\rangle = \frac{\int\!\!\mathcal{D}U\,\tilde{O}[U]\,\exp(-S_{\rm gauge}[U])K[U]}{\int\!\!\mathcal{D}U\,\exp(-S_{\rm lat})K[U]}$$

 $\tilde{O}[U]$ is an expression in terms of

- link variables $U_{\mu}(x)$ (gauge field),
- full quark propagators on a gauge background $\{ \overset{|}{q}(y) \overset{|}{\bar{q}}(x) \} [U]$

importance sampling

• generate a set of N gauge configurations $\{U\}$ with a method ensuring probability $[U] \sim \exp(-S_{\text{gauge}})K[U]$

$$(O) = \frac{1}{N} \sum_{\{U\}} \tilde{O}[U]$$

Example: semi-inclusive deeply inelastic scattering (**SIDIS**) Intrinsic transverse quark momentum responsible for azimuthal asymmetries of the cross section (Cahn- and Sivers-effect, ...).

Example: semi-inclusive deeply inelastic scattering (**SIDIS**) Intrinsic transverse quark momentum responsible for azimuthal asymmetries of the cross section (Cahn- and Sivers-effect, ...).

definition of TMD PDFs ("basic" version)

$$\Phi^{[\Gamma]}(k, P, S) \equiv " \langle P, S | \bar{q}(k) \Gamma q(k) | P, S \rangle "$$

lightcone coor. $w^{\pm} = \frac{1}{\sqrt{2}}(w^0 \pm w^3)$, so $w = w^+ \hat{n}_+ + w^- \hat{n}_- + w_{\perp}$ proton flies along z-axis: P^+ large, $P_{\perp} = 0$

parametrization in terms of TMD PDFs, example

$$\int dk^- \Phi^{[\gamma^+]}(k, P, S)\Big|_{k^+=xP^+} = f_1(x, k_\perp^2) - \frac{\epsilon_{ij}k_iS_j}{m_N}f_{1T}^\perp(x, k_\perp)$$
[Ralston, Soper NPB 1979], [Mulders, Tangerman NPB 1996], [Goeke, Metz, Schlegel PLB 2005]

definition of TMD PDFs ("basic" version)

$$\Phi^{[\Gamma]}(k,P,S) \equiv \frac{1}{2} \int \frac{d^4\ell}{(2\pi)^4} e^{-ik\cdot\ell} \langle P,S | \bar{q}(\ell) \Pi \mathcal{U} q(0) | P,S \rangle$$

lightcone coor. $w^{\pm} = \frac{1}{\sqrt{2}}(w^0 \pm w^3)$, so $w = w^+ \hat{n}_+ + w^- \hat{n}_- + w_{\perp}$ proton flies along z-axis: P^+ large, $P_{\perp} = 0$

parametrization in terms of TMD PDFs, example

$$\int dk^- \Phi^{[\gamma^+]}(k, P, S)\Big|_{k^+=xP^+} = f_1(x, k_\perp^2) - \frac{\epsilon_{ij}k_iS_j}{m_N}f_{1T}^\perp(x, k_\perp)$$
[Ralston, Soper NPB 1979], [Mulders, Tangerman NPB 1996], [Goeke, Metz, Schlegel PLB 2005]

straight path

 $\left\langle P \right| \ \overline{q}(\ell) \, \Gamma \, \mathcal{U} \, q(0) \ \left| P \right\rangle \text{ is gauge invariant.}$

continuum

$$\mathcal{U} \equiv \mathcal{P} \exp\left(-ig \int_{0}^{\ell} d\xi^{\mu} A_{\mu}(\xi)\right)$$

along path from 0 to ℓ

factorization in SIDIS : path runs to infinity and back *here* (up to now):

$\left\langle P \right| \ \overline{q}(\ell) \, \Gamma \, \mathcal{U} \, q(0) \ \left| P \right\rangle \text{ is gauge invariant.}$

$$V_{\rm ren}(r) = V(r) + 2 \frac{\delta \hat{m}}{a}$$

String [Lüscher, Symanzik, Weisz (1980)]

at large r: $V_{\rm ren}(r) \approx V_{\rm string}(r) = \sigma r - \pi/12r + C$

method [Cheng Prd77,014511 (2008)]

determine
$$\delta \hat{m}$$
 from
 $V_{\rm ren}(0.7 \,{\rm fm}) \stackrel{!}{=} V_{\rm string}(0.7 \,{\rm fm})$

static quark potential

$$V_{ren}(r) = V(r) + 2 \delta \hat{m}/a$$

string [Lüscher, Symanzik, Weisz (1980)]
at large $r: V_{ren}(r) \approx$
 $V_{string}(r) = \sigma r - \pi/12r + C$
method [Cheng PRD77,014511 (2008)]
determine $\delta \hat{m}$ from
 $V_{ren}(0.7 \text{ fm}) \stackrel{!}{=} V_{string}(0.7 \text{ fm})$

[Craigie, Dorn NPB185,204 (1981)]

smooth path

$$[\bar{q} \ \mathcal{U} \ q]_{\mathrm{ren}} = Z^{-1} \exp\left(-\delta \hat{m} \frac{l}{a} \right) \ [\bar{q} \ \mathcal{U} \ q]$$

static quark potential $V_{\rm ren}(r) = V(r) + 2 \, \delta \hat{m} / a$ string [Lüscher.SYMANZIK.WEISZ (1980)] at large $r: V_{\rm ren}(r) \approx$ $V_{\rm string}(r) = \sigma r - \pi / 12r + 0$ method [CHENG PRD77,014511 (2008)] determine $\delta \hat{m}$ from $V_{\rm ren}(0.7 \text{ fm}) \stackrel{!}{=} V_{\rm string}(0.7 \text{ fm})$

parametrization of the matrix elements

$$\Phi^{[\Gamma]}(k,P,S) \; \equiv \; \frac{1}{2} \, \int \frac{d^4\ell}{(2\pi)^4} \; e^{-ik \cdot \ell} \; \left< P,S \right| \; \bar{q}(\ell) \, \Gamma \, \mathcal{U} \, q(0) \; \left| P,S \right>$$

isolation of Lorentz-invariant amplitudes Compare [Mulders, Tangerman NPB (1996)]

 $\langle P, S | \ \overline{q}(\ell) \gamma_{\mu} \mathcal{U} q(0) \ | P, S \rangle = 4 \ \tilde{A}_2 \ P_{\mu} \ + \ 4i \, m_N^2 \ \tilde{A}_3 \ \ell_{\mu}$

$$\begin{array}{lll} \langle P,S \mid \overline{q}(\ell) \gamma_{\mu} \gamma^{5} \mathcal{U} q(0) \mid P,S \rangle &= -4 \, m_{N} \, \tilde{A}_{6} \, S_{\mu} \\ & -4i \, m_{N} \, \tilde{A}_{7} \, P_{\mu}(\ell \cdot S) \\ & +4 \, m_{N}^{3} \, \tilde{A}_{8} \, \ell_{\mu}(\ell \cdot S) \end{array}$$

 $\langle P, S | \overline{q}(\ell) \dots \mathcal{U}q(0) | P, S \rangle$ = further structures (9 amplitudes in total)

Transformation properties of the matrix element $(\dagger, \mathcal{P}, \mathcal{T})$ limit number of allowed structures. No \mathcal{T} -odd structures (Sivers function, ...) with straight gauge link.

The amplitudes fulfill $\tilde{A}_i(\ell^2, \ell \cdot P) = \left[\tilde{A}_i(\ell^2, -\ell \cdot P)\right]^*$.

parametrization of the matrix elements

$$\Phi^{[\Gamma]}(k,P,S) \equiv \frac{1}{2} \int \frac{d^4\ell}{(2\pi)^4} e^{-ik\cdot\ell} \langle P,S | \bar{q}(\ell) \Gamma \mathcal{U}q(0) | P,S \rangle$$

isolation of Lorentz-invariant amplitudes compare [MULDERS, TANGERMAN NPB (1996)]

$$\langle P, S \mid \overline{q}(\ell) \gamma_{\mu} \mathcal{U} q(0) \mid P, S \rangle = 4 \widetilde{A_2} P_{\mu} + 4i m_N^2 \widetilde{A_3} \ell_{\mu}$$

$$\Rightarrow f_1(x, k_{\perp}^2)$$

$$\langle P, S \mid \overline{q}(\ell) \gamma_{\mu} \gamma^5 \mathcal{U} q(0) \mid P, S \rangle = -4 m_N \widetilde{A_6} S_{\mu}$$

$$-4i m_N \widetilde{A_7} P_{\mu}(\ell \cdot S)$$

$$+4 m_N^3 \widetilde{A_8} \ell_{\mu}(\ell \cdot S)$$

$$\Rightarrow g_{1T}(x, k_{\perp}^2)$$

$$\langle P, S \mid \overline{q}(\ell) - \mathcal{U} q(0) \mid P, S \rangle = \text{further structures (9 amplitudes in total)}$$

Transformation properties of the matrix element $(\dagger, \mathcal{P}, \mathcal{T})$ limit number of allowed structures. No \mathcal{T} -odd structures (Sivers function, ...) with straight gauge link.

The amplitudes fulfill $\tilde{A}_i(\ell^2, \ell \cdot P) = \left[\tilde{A}_i(\ell^2, -\ell \cdot P)\right]^*$.

We employ the Chroma library [Edwards, Joo (2005)] to process

MILC gauge configurations

staggered Asqtad action, 2+1 flavors, $a \approx 0.124$ fm, $m_{\pi} \approx 500, 610$, and 760 MeV

[Orginos, Toussaint PRD (1999)]

 m_π adjusted to staggered sea,

nucleon momenta:

 $\boldsymbol{P} = 0$ and $|\boldsymbol{P}| = 500$ MeV

e.g., [HÄGLER ET AL. PRD (2008)]

extracting nucleon structure from the lattice

[We neglect "disconnected contributions" (absent for up minus down).]

15

transfer matrix formalism

ratio of correlators far away from nucleon source and sink

Г	$\frac{1}{2}C_{3\text{pt}}^{\text{ren}}(\tau;\Gamma,\boldsymbol{\ell},\boldsymbol{P})/C_{2\text{pt}}(\boldsymbol{P})$ (LHPC projectors)
1	$rac{m_N}{E(P)} ilde{A}_1$
$-\gamma_4\gamma_5$	$im_N ilde{A}_7\ell_z$
γ_4	$ ilde{A}_2$
$\frac{1}{2}[\gamma_2,\gamma_4]$	$\frac{1}{E(P)}\tilde{A}_9P_x + \frac{im_N^2}{E(P)}\tilde{A}_{10}\ell_x + \frac{m_N^2}{E(P)}\tilde{A}_{11}(\ell_z)^2 P_x$

transfer matrix formalism

ratio of correlators far away from nucleon source and sink

from amplitudes to TMD PDFs

$$\Phi^{[\Gamma]}(k,P,S) \equiv \frac{1}{2} \int \frac{d^4\ell}{(2\pi)^4} e^{-ik\cdot\ell} \langle P,S | \bar{q}(\ell) \Gamma \mathcal{U}q(0) | P,S \rangle$$

example: unpolarized case

$$\begin{split} f_1(x, \boldsymbol{k}_{\perp}^2) &\equiv \Phi^{[\gamma^+]}(x, \boldsymbol{k}_{\perp}; P, S) \\ &= \int \frac{d(\ell \cdot P)}{2\pi} \ e^{ix(\ell \cdot P)} \ \int \frac{d^2 \boldsymbol{\ell}_{\perp}}{(2\pi)^2} \ e^{-i\boldsymbol{k}_{\perp} \cdot \boldsymbol{\ell}_{\perp}} \ 2\tilde{A}_2(\ell^2, \ell \cdot P) \ \Big|_{\ell^+=0} \end{split}$$

direct link amplitudes from the lattice

extract Lorentz-invariant amplitudes $\tilde{A}_i(\ell^2, \ell \cdot P)$, example :

$$\begin{aligned} \langle \boldsymbol{P}, \boldsymbol{S} | \ \bar{q}(\boldsymbol{\ell}) \ \boldsymbol{\gamma}_{\boldsymbol{\mu}} \mathcal{U} q(0) \ | \boldsymbol{P}, \boldsymbol{S} \rangle \ &= \ 4 \tilde{A}_2 \boldsymbol{P}_{\boldsymbol{\mu}} \ + \ 4 i \ m_N^2 \ \tilde{A}_3 \ \boldsymbol{\ell}_{\boldsymbol{\mu}} \ , \\ f_1(x, \boldsymbol{k}_{\perp}^2) = \int \frac{d(\boldsymbol{\ell} \cdot \boldsymbol{P})}{2\pi} \ e^{ix(\boldsymbol{\ell} \cdot \boldsymbol{P})} \ \int \frac{d^2 \boldsymbol{\ell}_{\perp}}{(2\pi)^2} \ e^{-i\boldsymbol{k}_{\perp} \cdot \boldsymbol{\ell}_{\perp}} \ 2 \tilde{A}_2(\boldsymbol{\ell}^2, \boldsymbol{\ell} \cdot \boldsymbol{P}) \ \Big|_{\boldsymbol{\ell}^+ = 0} \end{aligned}$$

$$egin{array}{cccc} \ell^2 & \stackrel{\mathrm{FT}}{\longleftrightarrow} & oldsymbol{k}_{\perp}^2 \ \ell \cdot P & \stackrel{\mathrm{FT}}{\longleftrightarrow} & x \end{array}$$

direct link amplitudes from the lattice

extract Lorentz-invariant amplitudes $\tilde{A}_i(\ell^2, \ell \cdot P)$, example :

$$\begin{aligned} \langle \boldsymbol{P}, \boldsymbol{S} | \ \bar{q}(\boldsymbol{\ell}) \ \boldsymbol{\gamma}_{\boldsymbol{\mu}} \mathcal{U} q(0) \ | \boldsymbol{P}, \boldsymbol{S} \rangle \ &= \ 4 \tilde{A}_2 \boldsymbol{P}_{\boldsymbol{\mu}} \ + \ 4 i \ m_N^2 \ \tilde{A}_3 \ \boldsymbol{\ell}_{\boldsymbol{\mu}} \ , \\ f_1(x, \boldsymbol{k}_{\perp}^2) = \int \frac{d(\boldsymbol{\ell} \cdot \boldsymbol{P})}{2\pi} \ e^{ix(\boldsymbol{\ell} \cdot \boldsymbol{P})} \ \int \frac{d^2 \boldsymbol{\ell}_{\perp}}{(2\pi)^2} \ e^{-i\boldsymbol{k}_{\perp} \cdot \boldsymbol{\ell}_{\perp}} \ 2 \tilde{A}_2(\boldsymbol{\ell}^2, \boldsymbol{\ell} \cdot \boldsymbol{P}) \ \Big|_{\boldsymbol{\ell}^+ = 0} \end{aligned}$$

$$egin{array}{ccc} \ell^2 & \stackrel{\mathrm{FT}}{\longleftrightarrow} & m{k}_{\perp}^2 \ \ell \cdot P & \stackrel{\mathrm{FT}}{\longleftrightarrow} & x \end{array}$$

Euclidean lattice

$$\ell^{0} = \ell_{4} = 0$$

$$\downarrow$$

$$\ell^{2} \leq 0,$$

$$|\ell \cdot P| \leq |\mathbf{P}| \sqrt{-\ell^{2}}$$
direct link amplitudes from the lattice

extract Lorentz-invariant amplitudes $\tilde{A}_i(\ell^2, \ell \cdot P)$, example :

$$\begin{aligned} \langle \boldsymbol{P}, \boldsymbol{S} | \ \bar{q}(\boldsymbol{\ell}) \ \boldsymbol{\gamma}_{\boldsymbol{\mu}} \mathcal{U} q(0) \ | \boldsymbol{P}, \boldsymbol{S} \rangle \ &= \ 4 \tilde{A}_2 \boldsymbol{P}_{\boldsymbol{\mu}} \ + \ 4 i \ m_N^2 \ \tilde{A}_3 \ \boldsymbol{\ell}_{\boldsymbol{\mu}} \ , \\ f_1(x, \boldsymbol{k}_{\perp}^2) = \int \frac{d(\boldsymbol{\ell} \cdot \boldsymbol{P})}{2\pi} \ e^{ix(\boldsymbol{\ell} \cdot \boldsymbol{P})} \ \int \frac{d^2 \boldsymbol{\ell}_{\perp}}{(2\pi)^2} \ e^{-i\boldsymbol{k}_{\perp} \cdot \boldsymbol{\ell}_{\perp}} \ 2 \tilde{A}_2(\boldsymbol{\ell}^2, \boldsymbol{\ell} \cdot \boldsymbol{P}) \ \Big|_{\boldsymbol{\ell}^+ = 0} \end{aligned}$$

$$\ell^2 \stackrel{\mathrm{FT}}{\longleftrightarrow} \boldsymbol{k}_{\perp}^2$$
 $\ell \cdot P \stackrel{\mathrm{FT}}{\longleftrightarrow} x$

Euclidean lattice

$$\ell^{0} = \ell_{4} = 0$$

$$\downarrow$$

$$\ell^{2} \leq 0,$$

$$|\ell \cdot P| \leq |\mathbf{P}| \sqrt{-\ell^{2}}$$

direct link amplitudes from the lattice

extract Lorentz-invariant amplitudes $\tilde{A}_i(\ell^2, \ell \cdot P)$, example :

$$\begin{aligned} \langle \boldsymbol{P}, \boldsymbol{S} | \ \bar{q}(\boldsymbol{\ell}) \ \boldsymbol{\gamma}_{\boldsymbol{\mu}} \mathcal{U} q(0) \ | \boldsymbol{P}, \boldsymbol{S} \rangle \ &= \ 4 \tilde{A}_2 \boldsymbol{P}_{\boldsymbol{\mu}} \ + \ 4 i \ m_N^2 \ \tilde{A}_3 \ \boldsymbol{\ell}_{\boldsymbol{\mu}} \ , \\ f_1(x, \boldsymbol{k}_{\perp}^2) = \int \frac{d(\boldsymbol{\ell} \cdot \boldsymbol{P})}{2\pi} \ e^{ix(\boldsymbol{\ell} \cdot \boldsymbol{P})} \ \int \frac{d^2 \boldsymbol{\ell}_{\perp}}{(2\pi)^2} \ e^{-i\boldsymbol{k}_{\perp} \cdot \boldsymbol{\ell}_{\perp}} \ 2 \tilde{A}_2(\boldsymbol{\ell}^2, \boldsymbol{\ell} \cdot \boldsymbol{P}) \ \Big|_{\boldsymbol{\ell}^+ = 0} \end{aligned}$$

Euclidean lattice

$$\ell^{0} = \ell_{4} = 0$$

$$\downarrow$$

$$\ell^{2} \leq 0,$$

$$|\ell \cdot P| \leq |\mathbf{P}| \sqrt{-\ell^{2}}$$

Lowest *x*-moment of TMD PDFs

lowest x-moment of $f_1(x, \boldsymbol{k}_{\perp}^2)$

$$f_{1}^{(0_{x})}(\boldsymbol{k}_{\perp}^{2}) \equiv \int_{-1}^{1} dx \ f_{1}(x, \boldsymbol{k}_{\perp}^{2}) = \int \frac{d^{2}\ell_{\perp}}{(2\pi)^{2}} e^{i\boldsymbol{k}_{\perp} \cdot \ell_{\perp}} \ 2 \ \tilde{A}_{2}(-\ell_{\perp}^{2}, 0)$$

$$fit \ function$$

$$C_{1} \exp(-|\ell|^{2}/\sigma_{1}^{2})$$

$$C_{1}^{0} = \int_{0}^{0} \frac{d^{2}\ell_{\perp}}{d^{2}} e^{i\boldsymbol{k}_{\perp} \cdot \ell_{\perp}} \ 2 \ \tilde{A}_{2}(-\ell_{\perp}^{2}, 0)$$

$$fit \ function$$

$$C_{1} \exp(-|\ell|^{2}/\sigma_{1}^{2})$$

$$Z_{1}^{0} = \int_{0}^{0} \frac{d^{2}\ell_{\perp}}{d^{2}} e^{i\boldsymbol{k}_{\perp} \cdot \ell_{\perp}} \ 2 \ \tilde{A}_{2}(-\ell_{\perp}^{2}, 0)$$

$$C_{1}^{0} = \int_{0}^{0} \frac{d^{2}\ell_{\perp}}{d^{2}} e^{i\boldsymbol{k}_{\perp} \cdot \ell_{\perp}} \ 2 \ \tilde{A}_{2}(-\ell_{\perp}^{2}, 0)$$

$$f_1^{(0_x)}(\boldsymbol{k}_{\perp}^2) \equiv \int_{-1}^1 dx \ f_1(x, \boldsymbol{k}_{\perp}^2) = \int \frac{d^2 \ell_{\perp}}{(2\pi)^2} \ e^{i \boldsymbol{k}_{\perp} \cdot \boldsymbol{\ell}_{\perp}} \ 2 \ \tilde{A}_2(-\ell_{\perp}^2, 0)$$

width of the distribution (RMS momentum):

$$\langle \boldsymbol{k}_{\perp}^{2} \rangle^{1/2} =$$

(391 ± 8_{stat} ± 27_{sys}) MeV

compare phenomenology [ANSELMINO ET AL., PRD71, 074006 (2005)]: $\langle \boldsymbol{k}_{\perp}^2 \rangle^{1/2} \approx 500 \text{ MeV}$ (estimate, Gaussian Ansatz)

$$f_1^{(0_x)}(\mathbf{k}_{\perp}^2) \equiv \int_{-1}^1 dx \ f_1(x, \mathbf{k}_{\perp}^2) = \int \frac{d^2 \ell_{\perp}}{(2\pi)^2} \ e^{i\mathbf{k}_{\perp} \cdot \boldsymbol{\ell}_{\perp}} \ 2 \, \tilde{A}_2(-\ell_{\perp}^2, 0)$$

sketch: behavior at small/large k_{\perp}

Problem with the perturbative tail

 $\int d^2 \mathbf{k}_{\perp} f_1(x, \mathbf{k}_{\perp}^2) \text{ is undefined,}$ in conflict with probability interpretation.

Gaussian is a poor man's solution.

Ideal would be a prescription that maintains $\int d^2 \mathbf{k}_{\perp} f_1(x, \mathbf{k}_{\perp}^2; \mu) = f_1(x; \mu)$ at some scale μ .

testing Gaussian parametrization

$$f_1^{(0_x)}(\boldsymbol{k}_{\perp}^2) = C_0 \exp(-\boldsymbol{k}_{\perp}^2/\mu_0^2)$$

$$g_1^{(0_x)}(\boldsymbol{k}_{\perp}^2) = C_2 \exp(-\boldsymbol{k}_{\perp}^2/\mu_2^2)$$
 vs.

$$\rho_{LL}^{\pm}(\mathbf{k}_{\perp}) \equiv \frac{1}{2} f_1^{(0_x)}(\mathbf{k}_{\perp}^2) \pm \frac{1}{2} g_1^{(0_x)}(\mathbf{k}_{\perp}^2)$$

$$\rho_{LL}^{+}(\mathbf{k}_{\perp}) = C_{+} \exp(-\mathbf{k}_{\perp}^2/\mu_{+}^2)$$

$$\rho_{LL}^{-}(\mathbf{k}_{\perp}) = C_{-} \exp(-\mathbf{k}_{\perp}^2/\mu_{-}^2)$$

 \Rightarrow Asymptotic behavior at large k_{\perp} imposed by Gaussian ansatz; not a "lattice result". Similar issues in analysis of experimental data.

more amplitudes ... (preliminary)

Leading-twist TMD PDFs

"genuine" signs of intrinsic quark momentum

"worm gear functions"

Diplol	e deformations
ρ_{TL} :	$\sim \lambda oldsymbol{k}_{\perp} \cdot oldsymbol{S}_{\perp} g_{1T} \ \sim \Lambda oldsymbol{k}_{\perp} \cdot oldsymbol{s}_{\perp} h_{\perp}^{\perp}$

The corresponding dipole structures $\sim \lambda \mathbf{b}_{\perp} \cdot \mathbf{S}_{\perp},$ $\sim \Lambda \mathbf{b}_{\perp} \cdot \mathbf{s}_{\perp}$ for impact parameter densities (from GPDs) are ruled out by symmetries.

[HÄGLER, MUSCH, NEGELE, SCHÄFER EPL 88, 61001 (2009)]

a polarized k_{\perp} -dependent quark density

Density of quarks with positive helicity, $\lambda = 1$, in a transversely polarized nucleon, $S_{\perp} = (1, 0)$:

$$\begin{split} \rho_{TL}(\boldsymbol{k}_{\perp};\boldsymbol{S}_{\perp},\lambda) &\equiv \frac{1}{2} \int dx \int dk^{-} \, \Phi^{[\gamma^{+}\frac{1}{2}(1+\gamma^{5})]}(k,P,S_{\perp}) \\ &= \frac{1}{2} \, f_{1}^{(0_{x})}(\boldsymbol{k}_{\perp}^{2}) + \frac{\lambda}{2} \, \frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp}}{m_{N}} \, g_{1T}^{(0_{x})}(\boldsymbol{k}_{\perp}^{2}) \end{split}$$

a polarized k_{\perp} -dependent quark density

Density of quarks with positive helicity, $\lambda = 1$, in a transversely polarized nucleon, $S_{\perp} = (1, 0)$:

$$\begin{split} \rho_{TL}(\boldsymbol{k}_{\perp};\boldsymbol{S}_{\perp},\lambda) &\equiv \frac{1}{2} \int dx \int dk^{-} \, \Phi^{[\gamma^{+}\frac{1}{2}(1+\gamma^{5})]}(k,P,S_{\perp}) \\ &= \frac{1}{2} \, f_{1}^{(0_{x})}(\boldsymbol{k}_{\perp}^{2}) + \frac{\lambda}{2} \, \frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp}}{m_{N}} \, g_{1T}^{(0_{x})}(\boldsymbol{k}_{\perp}^{2}) \end{split}$$

26

\boldsymbol{k}_{\perp} -moments, ratios of amplitudes

$$f^{(m_x,n_\perp)} \equiv \int_{-1}^1 dx \, x^m \int d^2 \boldsymbol{k}_\perp \left(\frac{\boldsymbol{k}_\perp^2}{2m_N^2}\right)^n f(x, \boldsymbol{k}_\perp^2)$$

Let us assume the amplitudes \tilde{A}_i are regular at $\ell^2 = 0$.

$$\langle \mathbf{k}_{\perp} \rangle_{\rho_{TL}} = \lambda \mathbf{S}_{\perp} m_N \frac{g_{1T}^{(0_x,1_{\perp})}}{f_1^{(0_x,0_{\perp})}} = \lambda \mathbf{S}_{\perp} m_N \frac{\tilde{A}_7(0,0)}{\tilde{A}_2(0,0)}$$

 \Rightarrow estimates for certain k_{\perp} -moments:

$$\langle \boldsymbol{k}_{\perp} \rangle_{
ho_{TL}} \approx \lambda \boldsymbol{S}_{\perp} m_N \frac{\tilde{A}_7(\ell_{\min}^2, 0)}{\tilde{A}_2(\ell_{\min}^2, 0)}$$

with ℓ_{\min}^2 large enough to avoid strong lattice artefacts. All self-energies from the gauge link cancel on the RHS (\Rightarrow no dependence on the renormalization condition).

In the presence of divergences at $\ell^2 = 0$, we assume ℓ_{\min}^2 represents a regularization scale.

x-dependence

$\ell \cdot P$ -dependence in \tilde{A}_2

$\ell \cdot P$ -dependence in \tilde{A}_2

(x, k_{\perp}) -factorization hypothesis

30

factorization hypothesis

$$f_1(x, {m k}_\perp^2) \; pprox \; f_1(x) \;\; f_1^{(0_x)}({m k}_\perp^2) \; / \; {\cal N}$$

as in phenomenological applications, e.g., Monte Carlo event generators

Then \tilde{A}_2 factorizes, too:

$$\tilde{A}_2(\ell^2, \ell \cdot P) = \tilde{A}_2^{\text{norm}}(\ell \cdot P) \ \tilde{A}_2(\ell^2, 0).$$

To test this, we define

$$\tilde{A}_2^{\text{norm}}(\ell^2, \ell \cdot P) \equiv \frac{\tilde{A}_2(\ell^2, \ell \cdot P)}{\text{Re } \tilde{A}_2(\ell^2, 0)}$$

(needs no renormalization!)

If factorization holds, $\tilde{A}_2^{\text{norm}}$ should be ℓ^2 -independent.

(x, k_{\perp}) -factorization hypothesis

factorization hypothesis

$$f_1(x, {m k}_\perp^2) \; pprox \; f_1(x) \;\; f_1^{(0_x)}({m k}_\perp^2) \; / \; {\cal N}$$

as in phenomenological applications, e.g., Monte Carlo event generators

Then \tilde{A}_2 factorizes, too:

 $\tilde{A}_2(\ell^2,\ell\cdot P) = \tilde{A}_2^{\mathrm{norm}}(\ell\cdot P) \ \tilde{A}_2(\ell^2,0).$

To test this, we define

$$\tilde{A}_2^{\text{norm}}(\ell^2, \ell \cdot P) \equiv \frac{\tilde{A}_2(\ell^2, \ell \cdot P)}{\text{Re } \tilde{A}_2(\ell^2, 0)}$$

(needs no renormalization!)

If factorization holds, $\tilde{A}_2^{\text{norm}}$ should be ℓ^2 -independent.

global $\ell \cdot P$ -behavior

All our data for $\tilde{A}_2^{\text{norm}}(\ell^2, \ell \cdot P)$ at $m_\pi \approx 600 \text{ MeV}$

qualitative comparison to a scalar diquark model [BACCHETTA, CONTI, RADICI PRD (2008)] at $\sqrt{-\ell^2} = 0, 1$ and 2 fm

 $l \cdot P$ + small offsets

global $\ell \cdot P$ -behavior

All our data for $\tilde{A}_2^{\text{norm}}(\ell^2, \ell \cdot P)$ at $m_\pi \approx 600 \text{ MeV}$

qualitative comparison to a scalar diquark model [BACCHETTA, CONTI, RADICI PRD (2008)] at $\sqrt{-\ell^2} = 0, 1$ and 2 fm

Extended Gauge Links

staple shaped gauge links

- gauge link = effective representation of struck quark ("final state interaction")
- \Rightarrow (almost lightlike)

$$\zeta \equiv \frac{(v \cdot P)^2}{v^2} \to \pm \infty$$

 keep ζ finite to avoid "rapidity divergences"

now 32 Lorentz-invariant amplitudes [Goeke,Metz,Schlegel plB618,90 (2005)]

$$A_i\left(k^2, k \cdot P, \frac{v \cdot k}{|v \cdot P|}, \frac{v^2}{|v \cdot P|^2}, \frac{v \cdot P}{|v \cdot P|}\right) = A_i\left(k^2, k \cdot P, \underbrace{\frac{v \cdot k}{|v \cdot P|}}_{\approx x}, \zeta^{-1}, \operatorname{sgn}(v \cdot P)\right)$$

Large ζ : evolution with ζ known [Collins, SOPER NPB194, 445 (1981)].

time reversal \mathcal{T}

$$\begin{array}{c} (v^0, v^1, v^2, v^3) \\ \text{future pointing } v \\ \text{TMD PDFs for SIDIS} \end{array} \right\} \xrightarrow{\mathcal{T}} \begin{cases} (-v^0, v^1, v^2, v^3) \\ \text{past pointing } v \\ \text{TMD PDFs for Drell-Yan} \end{cases}$$

The transformation property of the matrix elements under time reversal provides relations:

Example of a \mathcal{T} -even amplitude:

Example of a \mathcal{T} -odd amplitude: $(\rightarrow \text{Sivers function } f_{1T}^{\perp})$

$$A_{12}\left(k^{2}, k \cdot P, \frac{v \cdot k}{v \cdot P}, \zeta^{-1}, 1\right) = -A_{12}\left(k^{2}, k \cdot P, \frac{v \cdot k}{v \cdot P}, \zeta^{-1}, -1\right)$$

$$\Downarrow$$

$$f_{1T}^{\perp(\mathrm{SIDIS})}(x, \boldsymbol{k}_{\perp}; \zeta, \ldots) = -f_{1T}^{\perp(\mathrm{Drell-Yan})}(x, \boldsymbol{k}_{\perp}; \zeta, \ldots)$$

HERMES and COMPASS data

[ANSELMINO et. al. EPJ A (2009)]

 $2 \langle k_{\perp} \rangle_{TU} = 96^{+60}_{-28} \text{ MeV (up)} \qquad \langle k_{\perp} \rangle_{TU} = -113^{+45}_{-51} \text{ MeV (down)}$

staple shaped links on the lattice

•
$$v \text{ spatial} \Rightarrow |\zeta| = \frac{(v \cdot P)^2}{|v|^2} \le |\boldsymbol{P}_{\text{lat.}}|^2$$

- look for plateaus at large $|\eta|$
- now 32 amplitudes $\tilde{a}_i(\ell^2, \ell \cdot P, v \cdot P; \eta, \zeta)$

Problem: need to subtract gauge link self-energy ($\rightarrow \eta$ -independence)

Unmodified/unrenormalized amplitude vanishes for $\eta \to \infty$.

SIDIS beyond the "basic" ansatz

e.g., [Ji, Ma, Yuan PRD $\left(2005\right)]$:

 $W^{\mu\nu}_{\rm unpol.,LO} \propto H \times f_1 \otimes D_h \otimes S_{\rm soft \ factor}$

modified definition of TMD PDF correlator:

$$\Phi^{[\Gamma]}(k,P,S) \equiv \frac{1}{2} \int \frac{d^4\ell}{(2\pi)^4} e^{-ik\cdot\ell} \frac{\langle P,S| \ \bar{q}(\ell) \ \Gamma \ \mathcal{U} \ q(0) \ |P,S\rangle}{\widetilde{S}(\ell_{\perp},\ldots)}$$

idea #1: modify definition of TMD PDFs

$$\begin{split} \Phi^{[\Gamma]}(k,P,S) &\equiv \frac{1}{2} \int \frac{d^4\ell}{(2\pi)^4} \; e^{-ik \cdot \ell} \; \frac{\langle P,S | \; \bar{q}(\ell) \; \Gamma \; \mathcal{U} \; q(0) \; | P,S \rangle}{\widetilde{S}(\ell_{\perp},\ldots)} \\ \text{with } \widetilde{S} \text{ obtained from a vacuum expectation value of gauge links} \end{split}$$

example Sivers function

$$\langle \boldsymbol{k}_{y} \rangle_{TU}^{\text{formally}} = -2m_{N}\boldsymbol{S}_{x} \lim_{\eta \to \infty} \frac{\tilde{a}_{12}(0,0,0;\eta,\zeta) + \dots}{\tilde{a}_{2}(0,0,0;\eta,\zeta)} \propto \frac{\int dx \int d^{2}\boldsymbol{k}_{\perp} \boldsymbol{k}_{\perp}^{2} \boldsymbol{f}_{1T}^{\perp}}{\int dx \int d^{2}\boldsymbol{k}_{\perp} \boldsymbol{k}_{\perp} f_{1}}$$
On the lattice, we can try to compute
$$\langle \boldsymbol{k}_{y} \rangle_{TU} \underset{\eta \text{ large}}{\approx} -2m_{N}\boldsymbol{S}_{x} \frac{\tilde{a}_{12}(\ell_{\min}^{2},0,0;\eta,\zeta) + \dots}{\tilde{a}_{2}(\ell_{\min}^{2},0,0;\eta,\zeta)}$$
Self-energy cancels!

Test calculation: a time reversal odd ratio of ampitudes

$$R_{\rm odd} = -\frac{\tilde{a}_{12} - (\eta \frac{m_N^2 v_1}{P_1}) \tilde{b}_8}{\tilde{a}_2}$$

Plateaus visible at large $|\eta|$. "Time-reversal odd" \leftrightarrow odd in $\eta v \cdot P$.

Part of the effect comes from the Sivers function f_{1T}^{\perp} !

Conclusion

40

Summary:

- Lattice exploration of intrinsic quark momentum distributions in the nucleon. "Full QCD testbed".
- Manifestly non-local operators on the lattice.
- First results based on a simplified operator geometry (direct gauge link) and a Gaussian fit model, at $m_{\pi} \approx 500$ MeV:
 - Obtaind x-integrated leading twist T-even TMD PDFs $f_1^{(0_x)}(\mathbf{k}_{\perp}^2), g_{1T}^{(0_x)}(\mathbf{k}_{\perp}^2), h_{1L}^{\perp(0_x)}(\mathbf{k}_{\perp}^2), \dots$
 - Observed deformed quark densities due to worm-gear functions.

Outlook:

• Study of non-straight gauge links similar as in SIDIS.

- Higher statistics needed to discuss factorization $f_1(x, \boldsymbol{k}_{\perp}^2) \approx f_1(x) f_1^{(0_x)}(\boldsymbol{k}_{\perp}^2) / \mathcal{N}.$
- Beyond Gaussian fits: Matching to perturbative behavior at small ℓ , i.e., large k_{\perp} .

Backup Slides
testing Gaussian parametrization

$$f_1^{(0)}(\boldsymbol{k}_{\perp}^2) = C_0 \exp(-\boldsymbol{k}_{\perp}^2/\mu_0^2)$$

$$g_1^{(0)}(\boldsymbol{k}_{\perp}^2) = C_2 \exp(-\boldsymbol{k}_{\perp}^2/\mu_2^2)$$

$$\rho_{LL}^{\pm}(\boldsymbol{k}_{\perp}^{2}) \equiv \frac{1}{2}f_{1}^{(0)}(\boldsymbol{k}_{\perp}^{2}) \pm \frac{1}{2}g_{1}^{(0)}(\boldsymbol{k}_{\perp}^{2})$$

$$\rho_{LL}^{\pm}(\boldsymbol{k}_{\perp}) = C_{+}\exp(-\boldsymbol{k}_{\perp}^{2}/\mu_{+}^{2})$$

$$\rho_{LL}^{\pm}(\boldsymbol{k}_{\perp}) = C_{-}\exp(-\boldsymbol{k}_{\perp}^{2}/\mu_{-}^{2})$$

vs.

	a (fm)	\hat{L}	\hat{T}	# configurations used
super-fine	0.06	48	144	15
fine	0.09	28	96	79
coarse	0.12	20	64	264
super-coarse	0.18	16	48	200

I have HYP-smeared all configurations.

renormalization constant from static potential

as outlined by ALEXEI BAZAVOV, priv. commun.

renormalization of potential

 $a V_{\rm ren}(r) = \ln \left[W_{\rm ren}(r,t) / W_{\rm ren}(r,t+a) \right] = a V(r) + 2 \,\delta\hat{m}$

 \Rightarrow Extract $\delta \hat{m}$ from the shift of the static potential?

fit Ansatz $V(r) = V_0 + \sigma r - \alpha/r + \lambda \left[1/r\right]$

We need a renormalization condition!

46

potential of a Nambu-Goto string [Lüscher, Symanzik, Weisz]

$$V_{\rm string}(r) = \sigma r - \pi/12r$$

We obtain $\delta \hat{m}$ by matching static potential and string potential at large enough distance: $V_{\rm ren}(0.75 \text{ fm}) = V_{\rm string}(0.75 \text{ fm})$.

Results from preliminary analysis on our smeared ensembles:						
	a (fm) = 0.06		0.09 0.12		0.18	
	$\delta \hat{m}$	-0.158	-0.164	-0.155	-0.10	

renormalization constant from static potential

as outlined by Alexei Bazavov, priv. commun.

renormalization of potential

 $a V_{\rm ren}(r) = \ln \left[W_{\rm ren}(r,t) / W_{\rm ren}(r,t+a) \right] = a V(r) + 2 \,\delta\hat{m}$

 \Rightarrow Extract $\delta \hat{m}$ from the shift of the static potential?

fit Ansatz $V(r) = V_0 + \sigma r - \alpha/r + \lambda \left[1/r\right]$

We need a renormalization condition!

47

potential of a Nambu-Goto string [Lüscher, Symanzik, Weisz]

$$V_{\rm string}(r) = \sigma r - \pi/12r$$

We obtain $\delta \hat{m}$ by matching static potential and string potential at large enough distance: $V_{\rm ren}(0.75 \text{ fm}) = V_{\rm string}(0.75 \text{ fm})$.

Results from preliminary analysis on our smeared ensembles:						
	a (fm) = 0.06		0.09 0.12		0.18	
	$\delta \hat{m}$	-0.158	-0.164	-0.155	-0.10	

effect of renormalization on Wilson lines

Vacuum expectation value of Wilson line $\langle \frac{1}{3} \text{Tr } \mathcal{U}_{[0,\ell]} \rangle$ on Landau gauge fixed ensemble:

 $\ln \langle \operatorname{Tr} \mathcal{U}_{[0,\ell]}^{\operatorname{ren}} \rangle = \ln \langle \operatorname{Tr} \mathcal{U}_{[0,\ell]} \rangle - \delta \hat{m} \frac{\ell}{a} - \ln Z_z, \quad Z_z \text{ responsible for shift.}$

effect of renormalization on Wilson lines

Vacuum expectation value of Wilson line $\langle \frac{1}{3} \text{Tr } \mathcal{U}_{[0,\ell]} \rangle$ on Landau gauge fixed ensemble:

 $\ln\langle \operatorname{Tr} \mathcal{U}_{[0,\ell]}^{\operatorname{ren}} \rangle = \ln\langle \operatorname{Tr} \mathcal{U}_{[0,\ell]} \rangle - \frac{\delta \hat{m}_{a}^{\ell}}{a} - \ln Z_{z}, \quad Z_{z} \text{ responsible for shift.}$

 $\ell \cdot P$ - dependence of $\tilde{A}_2(\ell^2, \ell \cdot P)$

2 Re $\tilde{A}_2(\ell^2, \ell \cdot P)$

2 Im $\tilde{A}_2(\ell^2, \ell \cdot P)$

 $\ell \cdot P$ - dependence of $\tilde{A}_2(\ell^2, \ell \cdot P)$

2 Re $\tilde{A}_2(\ell^2, \ell \cdot P)$

2 Im $\tilde{A}_2(\ell^2, \ell \cdot P)$

effect of normalization with amplitude at $\ell \cdot P = 0$ 50

2 Re $\tilde{A}_2(\ell^2, \ell \cdot P)$ Re $\tilde{A}_2^{\text{norm}} = \frac{\text{Re } \tilde{A}_2(\ell^2, \ell \cdot P)}{\text{Re } \tilde{A}_2(\ell^2, 0)}$

effect of normalization with amplitude at $\ell \cdot P = 0$ 50

 $2 \operatorname{Im} \tilde{A}_2(\ell^2, \ell \cdot P) \qquad \qquad \operatorname{Im} \tilde{A}_2^{\operatorname{norm}} = \frac{\operatorname{Im} \tilde{A}_2(\ell^2, \ell \cdot P)}{\operatorname{Re} \tilde{A}_2(\ell^2, 0)}$

