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Motivation: our picture of the proton at high velocity

Proton appears flat (Lorentz-contraction). Quarks carry

I a fraction x of the proton momentum P = (0, 0,P z)

I transverse momentum k⊥ = (kx,ky)
↔ intrinsic quark motion!

How are the quarks distributed
with respect to x and k⊥?

=⇒ Transverse Momentum Dependent parton distribution
functions (TMDs). Example: f1(x,k2

⊥).
Intuitively interpretation as 3-dimensional quark densities
in momentum space.

Our goal is to make predictions about TMDs from the basic
laws of Quantum Chromodynamics (QCD), using lattice QCD
computer simulations [HMNS09, Mus09].

TMDs in Experiment

P
k

proton

qu
ar

k

P

photon

electron

ha
dr

on

gluons

... ...

Φ  ↔  TMDs  f1, g1T, ...

TMDs are explored at COMPASS (CERN), HERMES
(DESY), Jefferson Lab, RHIC (BNL), Fermilab and
BELLE (KEK). More experiments are planned world
wide. TMDs are deduced from angular asymmetries in
the particle production in semi-inclusive deep inelastic
scattering (SIDIS) or the Drell-Yan process.

Example SIDIS: e+p→ e′+hadron+X, see schematic
diagram on the left. The process can be approximately
factorized into soft and hard parts [CSS85, JMY05].
The lower gray blob, Φ, characterizes quarks in the
proton through TMDs.

Hadron properties from lattice QCD

Properties of the proton or other hadrons cannot be calculated with standard
perturbation theory, due to the strong interaction at long distances. In lat-
tice QCD, we put the problem on a grid (lattice) of spacing a inside a four-
dimensional box of dimensions L3 × T . Massive parallel high performance
computing is required to solve the QCD path integral with sufficient precision.

A computer cluster at Jefferson Lab

The resulting “gauge configurations” can
be used to calculate many different quan-
tities (hadron masses, form factors, polar-
izabilities, Generalized Parton Distribution
functions, TMDs, . . .). To reduce cost,
most calculations today are still performed
at unrealistically high quark masses, typi-
cally specified in terms of mπ.

Defining TMDs

Some details as to how to define TMDs consistently in field theory are still controversial [Col08, CKS10].
Basic definition [CS82]:
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where k± = (k0 ± k3)/
√

2. Now Φ[Γ] can be decomposed into TMDs f1, g1T , etc. [MT96]. Example:

Φ[γ++λγ+γ5] = f1(x,k2
⊥) + λ

k⊥ · S⊥
mN

g1T (x,k2
⊥) +

[
Sjεjiki
mN

f⊥1T (x,k2
⊥)

]
odd

≡ 2 ρTL(x,k2
⊥;λ,S⊥)

ρTL is the density of longitudinally polarized quarks (helicity λ) in a transversely polarized proton (spin S⊥).

U [Cl] is a Wilson line

U [Cl] ≡ P exp

(
−ig

∫
C
dξµAµ(ξ)

) For SIDIS, the contour C runs
from 0 to ∞ and back to l.

For our calculation, we presently use
straight links.

The [ ]odd piece has different sign in SIDIS and Drell-Yan [Col02] and vanishes for straight links.

Parametrization with amplitudes

For straight Wilson lines, Φ̃[Γ] can be parametrized in terms of Lorentz-invariant amplitudes Ãi(l
2, l·P ):

Φ̃[γµ] = 2Pµ Ã2 + 2imN
2 lµ Ã3 ,

Φ̃[γµγ5] = −2mN S
µ Ã6 − 2imN P

µ(l · S) Ã7 + 2mN
3 lµ(l · S) Ã8 ,

The TMDs are Fourier-transforms of amplitudes.
∫
X transforms x↔ l·P ,

∫
M transforms k2

⊥↔ l2 :

f1(x,k2
⊥) = 2

∫
X
∫
M Ã2(l2, l·P ) , g1T (x,k2

⊥) = 4m2
N∂k2

⊥

∫
X
∫
M Ã7(l2, l·P ) , etc.

Calculating TMDs on the lattice
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We calculate the matrix elements Φ̃[Γ](l, P, S) directly on the lattice from 3-
point functions. Three quark fields (u, u, d) at the source and sink loca-
tion generate particles with the right quantum numbers. At Euclidean time τ ,
we insert the non-local operator q(l) ΓU [Cl] q(0), where q can be u or d.
The straight Wilson line is approximated by a steplike
product of link variables, see inset on the right. If
τ is far enough away from source and sink, only the
ground state, the proton, is probed. In practice, the 3-
point function is assembled from the gauge link U and
lattice quark propagators (connecting lines), three of
which are combined into a “sequential propagator” (dark blob). Disconnected
diagrams are neglected.

Technically, our method is inspired by and very similar to the GPD analysis by the LHP collaboration [H+08]. We
can save computationally extremely expensive steps by reusing existing input data granted to us by MILC and LHPC:
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MILC gauge configurations [A+04]
L3 × T = 203 × 64, a ≈ 0.12 fm,
staggered asqtad action, 2+1 flavors.
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LHPC propagators & sequential propagators [H+08]
source-sink-separation: 10a, two proton momenta:

P = (0, 0, 0) and P = (−1, 0, 0)2π/L
∧
= 500 MeV/c

Domain Wall valence fermions adjusted to staggered sea.

Results with straight Wilson lines

Unrenormailized lattice results for Ã2(l2, l·P ) for u− d quarks at mπ ≈ 800 MeV. Each black dot corresponds to a
different quark separation l. In Euclidean space-time, we must set l0 = −il4 = 0, confining us to the region

l2 < 0, |l·P | < |P |
√
−l2 (grey triangle). Note |l| ≡

√
−l2.
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The restricted range of |l·P | prevents us from fully reconstructing
TMDs. However, x-integrated distributions are already accessible from
the data at l·P = 0. Example:

g
〈0〉x
1T (k2

⊥) ≡
∫ 1

−1
dx g1T (x,k2

⊥) = 4m2
N∂k2

⊥

∫
M Ã7(l2, 0)

Lattice results for Ã7(l2, 0) at l·P = 0 for up-quarks at mπ ≈ 500 MeV
are shown on the right. The green points are unrenormalized. The blue
points are renormalized using the static quark potential [C+08, Mus09].
The orange line and error band are a Gaussian fit. Lattice data below
|l| ≤ 0.25 fm are affected by lattice cutoff effects and have not been
included in the fit. Note that the renormalization of the Wilson line introduces a renormalization condition, whose
meaning in terms of a physical factorization or renormalization scale is not known, yet. This problem mainly affects
the width of the amplitude and may be solved by an improved definition of the TMD correlator.
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The Gaussian ansatz for the Ãi(l
2, 0) allows us to perform the Fourier

transform
∫
M . Combinations of the resulting x-integrated TMDs f

〈0〉x
1 ,

g
〈0〉x
1T , etc., have an interpretation as x-integrated quark densities. The

upper two plots of the graphics on the left show the x-integrated

density ρ
〈0〉x
TL (k2

⊥;λ = 1,S⊥ = (1, 0)) for up and for down quarks at
mπ = 500 MeV. The insets illustrate the spin orientations of quark and

proton. The contribution from g
〈0〉x
1T leads to a dipole deformation of the

density. This deformation introduces a non-zero average quark momen-
tum 〈kx〉TL, which is largely unaffected by the choice of the renormal-
ization condition. Our results, 〈kx〉TL = 67(5) MeV for up quarks and
〈kx〉TL = −30(5) MeV for down quarks, are remarkably similar to re-
sults from a light cone constituent quark model [PCB08]. The lower two

plots show x-integrated densities ρ
〈0〉x
LT of transversely polarized quarks in

a longitudinally polarized proton. We see deformations in the opposite

direction as in ρ
〈0〉x
TL , again in qualitative agreement with models.

Outlook

Within a USQCD proposal, we have been granted 1.1 million processor core hours on the Jefferson Lab cluster. In
particular, we will analyze staple shaped Wilson lines. This will enable us to study the effect of the link path and
naively time-reversal odd phenomena, as they occur, e.g., in SIDIS and Drell-Yan experiments.
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