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Why are PDFs at large x important?

input into nuclear physics & astrophysics calculations

basic information on structure of bound states in QCD

x ~ 1 region amenable to pQCD analysis

backgrounds in high-energy collider searches for
physics beyond the Standard Model

evolution:  high x at low              low x at high   Q  2 Q  2

small uncertainties amplified

HERA “anomaly” (1998),  NuTeV “anomaly” (2002)
neutrino oscillations

more direct connection with hadron structure models

clean connection with QCD, via lattice moments



d/u at large x
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d/u predictions

Ratio of d to u quark distributions particularly
sensitive to quark dynamics in nucleon
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Ratio of d to u quark distributions particularly
sensitive to quark dynamics in nucleon
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scalar diquark dominance

=⇒
.

.

has larger energy thanM∆ > MN =⇒ (qq)1 (qq)0

scalar diquark dominant in            limitx → 1=⇒
.
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since only u quarks couple to scalar diquarks
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d/u predictions



hard gluon exchange
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at large x, helicity of struck quark = helicity of hadron 
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At large x,  valence u and d distributions extracted
from p and n structure functions
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d quark distribution requires n structure function

d/u extraction



BUT  no free neutron targets!
(neutron half-life ~ 12 mins)                                            

use deuteron as ‘‘effective neutron target’’

However:  deuteron is a nucleus, and F d
2 != F

p
2

+ F
n
2

nuclear effects (nuclear binding, Fermi motion, shadowing)
obscure neutron structure information                                                           

“nuclear EMC effect”

d/u extraction



Larger EMC effect (smaller d/N ratio)

F
n

2
underestimated at large x

FIGURES

FIG. 1. FD
2 /FN

2 ratio as a function of x for the off-shell model of Refs. [4,5] (solid) and the
on-shell model of Ref. [6] (dotted).

In Refs. [4,5] the structure function F N
2 was modeled in terms of relativistic quark–

nucleon vertex functions, which were parametrized by comparing with available data for
the parton distribution functions. The off-shell extrapolation of the γ∗N interaction was
modeled assuming no additional dynamical p2 dependence in the quark–nucleon vertices.
This enabled an estimate of the correction δ(off)F D

2 to be made, which was found to be quite
small, of the order ∼ 1−2% for x <∼ 0.9. The result of the fully off-shell calculation from Ref.
[4] is shown in Fig.1 (solid curve), where the ratio of the total deuteron to nucleon structure
functions (F D

2 /FN
2 ) is plotted. Shown also is the result of an on-mass-shell calculation from

Ref. [6] (dotted curve), which has been used in many previous analyses of the deuteron data
[7,8]. The most striking difference between the curves is the fact that the on-shell ratio has
a very much smaller trough at x ≈ 0.3, and rises faster above unity (at x ≈ 0.5) than the
off-shell curve, which has a deeper trough, at x ≈ 0.6− 0.7, and rises above unity somewhat
later (at x ≈ 0.8).

The behavior of the off-shell curve in Fig.1 is qualitatively similar to that found by
Uchiyama and Saito [9], Kaptari and Umnikov [10], and Braun and Tokarev [11], who also
used off-mass-shell kinematics, but did not include the (small) non-convolution correction
term δ(off)F D

2 . The on-shell calculation [6], on the other hand, was performed in the infinite
momentum frame where the nucleons are on their mass shells and the physical structure
functions can be used in Eq.(1). One problem with this approach is that the deuteron
wave functions in the infinite momentum frame are not explicitly known. In practice one
usually makes use of the ordinary non-relativistic S- and D-state deuteron wave functions

3

with binding
+ off-shell

Fermi motion only

full model
light-cone

d/u extraction



A similar result is also obtained in the treatment of Brodsky et al. [21] (based on
counting-rules), where the large-x behavior of the parton distribution for a quark polar-
ized parallel (∆Sz = 1) or antiparallel (∆Sz = 0) to the proton helicity is given by:
q↑↓(x) = (1 − x)2n−1+∆Sz , where n is the minimum number of non-interacting quarks
(equal to 2 for the valence quark distributions). In the x → 1 limit one therefore predicts:

F n
2

F p
2

→ 3

7
,

d

u
→ 1

5
[Sz = 0 dominance]. (11)

Note that the d/u ratio does not vanish in this model. Clearly, if one is to understand the dy-
namics of the nucleon’s quark distributions at large x, it is imperative that the consequences
of these models be tested experimentally.

The reanalyzed SLAC [7,22] data points themselves are plotted in Fig.3, at an average
value of Q2 ≈ 12 GeV2. The very small error bars are testimony to the quality of the SLAC p
and D data. The data represented by the open circles have been extracted with the on-shell
deuteron model of Ref. [6], while the filled circles were obtained using the off-shell model of
Refs. [4,5]. Most importantly, the F n

2 /F p
2 points obtained with the off-shell method appear

to approach a value broadly consistent with the Farrar-Jackson [20] and Brodsky et al. [21]
prediction of 3/7, whereas the data previously analyzed in terms of the on-shell formalism
produced a ratio that tended to the lower value of 1/4.

FIG. 3. Deconvoluted Fn
2 /F p

2 ratio extracted from the SLAC p and D data [7,22], at an average

value of Q2 ≈ 12 GeV2, assuming no off-shell effects (open circles), and including off-shell effects
(full circles).

The d/u ratio, shown in Fig.4, is obtained by inverting F n
2 /F p

2 in the valence quark
dominated region. The points extracted using the off-shell formalism (solid circles) are

7

with binding 
& off-shell

Fermi motion only

without EMC effect in d,        underestimated at large xF
n

2

SU(6)

helicity

scalar
diquarks

retention

WM, Thomas
Phys. Lett. B 377 (1996) 11

d/u extraction



uncertainty due to 
nuclear effects in neutron
(full range of nuclear models)

d distribution poorly 
known beyond x ~ 0.5

d/u extraction



mass difference. The Λ is isosinglet, so it features [ud]; while Σ, being isotriplet, features
(ud). The Σ is indeed heavier, by about 80 MeV. Of course, this comparison of diquarks
is not ideal, since the spectator s quark also has significant spin-dependent interactions. A
cleaner comparison involves the charm analogues, where Σc−Λc = 215 MeV. (Actually this
comparison is not so clean either, as we’ll discuss later. One sign of uncleanliness is that
there either Σc(2520)

3
2

+
or Σc(2455)

1
2

+
might be used for comparison; here I’ve taken the

weighted average.)
One of the oldest observations in deep inelastic scattering is that the ratio of neutron

to proton structure functions approaches 1
4 in the limit x → 1

lim
x→1

Fn
2 (x)

F p
2 (x)

→ 1

4
(1.1)

In terms of the twist-two operator matrix elements used in the formal analysis of deep
inelastic scattering, this translates into the statement

lim
n→∞

〈p|d̄γµ1

←→∇ µ2
· · ·←→∇ µn

d|p〉
〈p|ūγµ1

←→∇ µ2
· · ·←→∇ µn

u|p〉
→ 0 (1.2)

where spin averaging of forward matrix elements, symmetrization over the µs, and removal
of traces is implicit, and a common tensorial form is factored out, together with similar equa-
tions where operators with strange quarks, gluons, etc. appear in the numerator. Equation
(1.2) states that in the valence regime x → 1, where the struck parton carries all the longitu-
dinal momentum of the proton, that struck parton must be a u quark. It implies, by isospin
symmetry, the corresponding relation for the neutron, namely that in the valence regime
within a neutron the parton must be a d quark. Then the ratio of neutron to proton matrix

elements will be governed by the ratio of the squares of quark charges, namely
(− 1

3
)2

( 2

3
)2

= 1
4 .

Any (isosinglet) contamination from other sources will contribute equally to numerator and
denominator, thereby increasing this ratio. Equation (1.2) is, from the point of view of
symmetry, a peculiar relation: it requires an emergent conspiracy between isosinglet and
isotriplet operators. It is, from a general physical point of view, most remarkable: it is
one of the most direct manifestations of the fractional charge on quarks; and it is a sort
of hadron = quark identity, closely related to the quark-hadron continuity conjectured to
arise in high density QCD. It is an interesting challenge to derive (1.2) from microscopic
QCD, and to estimate the rate of approach to 0.

A more adventurous application is to fragmentation. One might guess that the formation
of baryons in fragmentation of an energetic quark or gluon jet could proceed stepwise,
through the formation of diquarks which then fuse with quarks. To the extent this is a
tunneling-type process, analogous to pair creation in an electric field, induced by the decay
of color flux tubes, one might expect that the good diquark would be significantly more
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Diquarks as Inspiration and as Objects

Frank Wilczek∗

September 17, 2004

Abstract

Attraction between quarks is a fundamental aspect of QCD. It is plausible that
several of the most profound aspects of low-energy QCD dynamics are connected to
diquark correlations, including: paucity of exotics (which is the foundation of the quark
model and of traditional nuclear physics), similarity of mesons and baryons, color su-
perconductivity at high density, hyperfine splittings, ∆I = 1/2 rule, and some striking
features of structure and fragmentation functions. After a brief overview of these issues,
I discuss how diquarks can be studied in isolation, both phenomenologically and numer-
ically, and present approximate mass differences for diquarks with different quantum
numbers. The mass-loaded generalization of the Chew-Frautschi formula provides an
essential tool.

1 Diquarks as Inspiration

1.1 Diquarks in Microscopic QCD

In electrodynamics the basic interaction between like-charged particles is repulsive. In
QCD, however, the primary interaction between two quarks can be attractive. At the
most heuristic level, this comes about as follows. Each quark is in the 3 representation, so
that the two-quark color state 3⊗3 can be either the symmetric 6 or the antisymmetric 3̄.
Antisymmetry, of course, is not possible with just 1 color! Two widely separated quarks each
generate the color flux associated with the fundamental representation; if they are brought
together in the 3̄, they will generate the flux associated with a single anti-fundamental,
which is just half as much. Thus by bringing the quarks together we lower the gluon field
energy: there is attraction in the 3̄ channel. We might expect this attraction to be roughly
half as powerful as the quark-antiquark 3⊗ 3̄ → 1. Since quark-antiquark attraction drives
the energy in the attractive channel below zero, triggering condensation 〈q̄q〉 %= 0 of qq̄
pairs and chiral symmetry breaking, an attraction even half as powerful would appear to
be potentially quite important for understanding low-energy QCD dynamics.

∗Solicited contribution to the Ian Kogan memorial volume, ed. M. Shifman.
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Folklore that experiment gives 1/4 limiting ratio...



Alternative extraction methods



Survey of methods to determine d/u

e∓ p → ν(ν̄)X low event rates

ν(ν̄) p → l∓ X low statistics at large x



again significantly above those obtained previously with the aid of the on-shell prescription.
In particular, they indicate that the d/u ratio may actually approach a finite value in the
x → 1 limit, contrary to the expectation of the model of Refs. [17,18], in which d/u tends
to zero. Although it is a priori not clear at which scale the model predictions [17,18,20,21]
should be valid, for the values of Q2 corresponding to the analyzed data the effects of Q2

evolution are minimal.

FIG. 4. Extracted d/u ratio, using the off-shell deuteron calculation (full circles) and using
on-shell kinematics (open circles). Also shown for comparison is the ratio extracted from neutrino
measurements by the CDHS collaboration [23].

Naturally it would be preferable to extract F n
2 at large x without having to deal with

uncertainties in the nuclear effects. In principle this could be achieved by using neutrino
and antineutrino beams to measure the u and d distributions in the proton separately, and
reconstructing F n

2 from these. Unfortunately, as seen in Fig.4, the neutrino data from the
CDHS collaboration [23] do not extend out to very large x (x <∼ 0.6), and at present cannot
discriminate between the different methods of analyzing the electron–deuteron data.

The results of our off-shell model are qualitatively similar [22] to those obtained using the
nuclear density method suggested by Frankfurt and Strikman [24]. There the EMC effect
in deuterium was assumed to scale with that in heavier nuclei according to the ratio of the
respective nuclear densities, so that the ratio F D

2 /FN
2 in the trough region was depleted by

about 4%, similar to that in Fig.1 (solid curve). This would give an F n
2 /F p

2 ratio broadly
consistent with 3/7.

We should also point out similar consequences for the spin-dependent neutron structure
function gn

1 , where the models of Refs. [17,18] and Refs. [20,21] also give different predictions
for gn

1 /gp
1 as x → 1, namely 1/4 and 3/7, respectively. Quite interestingly, while the ratio of

8

F
νp

2
= 2x (d + ū) xF

νp

3
= x (d − ū)

F
ν̄p

2
= 2x (u + d̄) xF

ν̄p

3
= x (u − d̄)



Survey of methods to determine d/u

e∓ p → ν(ν̄)X low event rates

ν(ν̄) p → l∓ X low statistics at large x

p p(p̄) → W±X large lepton rapidity

e p → e π± X z ~ 1, factorization 



σ
π

+

p
∼ 4 u(x) D(z) + d(x) D̄(z)

σ
π
−

p
∼ 4 u(x) D̄(z) + d(x) D(z)

Ratio

Rπ(x, z) =
σπ

−

p

σπ+

p

=
4D̄(z)/D(z) + d(x)/u(x)

4 + d(x)/u(x) · D̄(z)/D(z)

in           limitz → 1→

1

4

d(x)

u(x)

At large x  (x > 0.4 - 0.5) , q̄(x) ≈ 0



Semi-inclusive ratio at z = 1
FIG. 2. Fragmentation functions, D(z) and D̄(z), from the EMC experiment [11], together

with the parameterizations given in Eq.(13).

FIG. 3. Theoretical ratio, Rπ, as a function of x for fixed z = 1. The dashed line represents the
ratio constructed from the CTEQ4 parameterization [12], while the solid includes the modified d

distribution according to Eq.(10).

9

CTEQ

modified CTEQ *

d

u
→

d

u
+ ∆*

∆ = 0.2 x
2
e
−(1−x)2



Semi-inclusive ratio at z < 1

d

u
→

d

u
+ ∆*

∆ = 0.2 x
2
e
−(1−x)2

FIG. 4. Ratio Rπ as function of x, integrated over z between 0.3 < z < 1 and 0.5 < z < 1. The

solid and dashed curves are as in Fig.3.

10

CTEQ

modified CTEQ *



smeared quark distribution in nucleon bound in d 

Combine with “neutron” (deuteron) target

eliminate dependence on fragmentation function

σ
π

+

ñ ∼ 4 (d̃(x) + εu(x)) D(z) + (ũ(x) + εd(x)) D̄(z)

σ
π
−

ñ ∼ 4 (d̃(x) + εu(x)) D̄(z) + (ũ(x) + εd(x)) D(z)

q̃(x) =

∫
dy

y
fN/d(y) q(x/y)

εq(x) = q̃(x) − q(x)



Ratio independent of fragmentation function

Rnp =
σπ+

ñ − σπ−

ñ

σπ+

p − σπ−

p

=
4d̃(x) − ũ(x) + 4εu(x) − εd(x)

4u(x) − d(x)

If no nuclear corrections 
q̃(x) = q(x)

Rnp =
4d(x)/u(x) − 1

4 − d(x)/d(x)FIGURES

FIG. 1. Ratio Rnp in Eq.(8) calculated with (solid) and without (dashed) smearing corrections.

The u and d distributions were taken (a) from the CTEQ4 parameterization [12], and (b) with the
d quark distribution modified as in Ref. [8] to have the correct perturbative QCD limit [1,6].

8

no smearing

with smearing



Survey of methods to determine d/u

e∓ p → ν(ν̄)X low event rates

ν(ν̄) p → l∓ X low statistics at large x

p p(p̄) → W±X large lepton rapidity

e p → e π± X z ~ 1, factorization 

e
3He(3H) → e X tritium target



A=3 mirror nuclei

EMC ratios in  He and  H:33

Defining the EMC-type ratios for the F2 structure functions of 3He and 3H (weighted by

corresponding isospin factors) by:

R(3He) =
F

3He
2

2F p
2 + F n

2

, R(3H) =
F

3H
2

F p
2 + 2F n

2

, (14)

one can write the “super-ratio”, R, of these as:

R =
R(3He)

R(3H)
. (15)

Inverting this expression directly yields the ratio of the free neutron to proton structure

functions:

F n
2

F p
2

=
2R− F

3He
2 /F

3H
2

2F
3He
2 /F

3H
2 −R . (16)

We stress that F n
2 /F p

2 extracted via Equation 16 does not depend on the size of the EMC

effect in 3He or 3H, but rather on the ratio of the EMC effects in 3He and 3H. If the neutron
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Neutron/proton ratio:



A=3 mirror nuclei

Nuclear effects mostly cancel in ratio of ratios
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Figure 5: The “super-ratio” R of nuclear EMC ratios for 3He and 3H nuclei, with the nucleon

momentum distribution calculated from the Faddeev (PEST, RSC, Yamaguchi) and variational

(RSC) wave functions [43].

clusters, however, these are generally confined to either the small-x [44], or very large-x

(x > 0.9) [45] regions.

The distribution f(y) of nucleons in the nucleus is related to the nucleon spectral function

S(p) by [29]:

f(y) =
∫

d3!p

(
1 +

pz

p0

)
δ

(
y − p0 + pz

M

)
S(p) , (18)

where p is the momentum of the bound nucleon. For an A = 3 nucleus the spectral function is

evaluated from the three-body nuclear wave function, calculated by either solving the homo-

geneous Faddeev equation with a given two-body interaction [42, 46] or by using a variational

15

correction which grows with A due to the A-dependence of the virtuality p2 of the bound

nucleon. This serves to enhance the EMC effect at large x in comparison with naive binding

model calculations which do not take into account nucleon off-shell effects.

0 0.2 0.4 0.6 0.8 1
0.99

1

1.01

1.02

x

R
3

R (  H)(  He) / 3

on−shell

off−shell

Figure 10: Ratio R of nuclear EMC ratios for 3He and 3H nuclei, with (dashed) and without (solid)

nucleon off-shell corrections [58] (see text), for the variational (RSC) wave function.

The effect of the off-shell correction on the ratio R, illustrated in Figure 10, is a small

(< 1%) increase in the ratio at x ∼ 0.6. Off-shell effects of this magnitude can be expected

in models of the EMC effect where the overall modification of the nuclear structure function

arises from a combination of conventional nuclear physics phenomena associated with nuclear

binding, and a small medium dependence of the nucleon’s intrinsic structure. Other models

of the EMC effect, such as the color screening model for the suppression of point-like config-

urations (PLC) in bound nucleons [61], attribute most or all of the EMC effect to a medium

modification of the internal structure of the bound nucleon, and consequently predict larger

22



A=3 mirror nuclei

Figure 13: Projected DIS (W 2 > 4 GeV2) data for the Fn
2 /F p

2 structure function ratio from

the proposed 3H/3He JLab experiment with a 11 GeV electron beam. The error bars include

point-to-point statistical, experimental and theoretical uncertainties, and an overall normalization

uncertainty added in quadrature. The shaded band indicates the present uncertainty due mainly

to possible binding effects in deuteron.

6 Projected Experimental Results

The point-to-point uncertainties in the F n
2 /F p

2 determination will result from i) point-to-

point uncertainties that do not cancel in the DIS cross section ratio of 3H to 3He (∼ ±0.5%

as in SLAC experiment E140 [79]), ii) the theoretical uncertainty in the calculation of the

32

Figure 14: Projected DIS (W 2 > 4 GeV2) data for the d/u quark distribution ratio from the pro-

posed 3H/3He JLab experiment with a 11 GeV electron beam. The error bars include point-to-point

statistical, experimental and theoretical uncertainties, and an overall normalization uncertainty

added in quadrature. The shaded band indicates the present uncertainty due mainly to possible

binding effects in deuteron.

where p and ps are the struck neutron and spectator proton four-momenta (with subscripts z

and t denoting longitudinal and transverse components), Es is the proton energy and Md is

the deuteron mass. This experimental approach is based on the isolation of the modifications

in the structure of the bound nucleon within the impulse approximation, by choosing kine-

34
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Survey of methods to determine d/u

e∓ p → ν(ν̄)X low event rates

ν(ν̄) p → l∓ X low statistics at large x

p p(p̄) → W±X large lepton rapidity

e p → e π± X z ~ 1, factorization 

e
3He(3H) → e X tritium target

e d → e p X BONUS: spectator proton tagging
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Survey of methods to determine d/u

e∓ p → ν(ν̄)X low event rates

ν(ν̄) p → l∓ X low statistics at large x

p p(p̄) → W±X large lepton rapidity

e p → e π± X z ~ 1, factorization 

e
3He(3H) → e X tritium target

e d → e p X BONUS: spectator proton tagging

!eL(!eR) p → e X PVDIS no nuclear effects!
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q

e
2

q
q(x)

for p target

a(x) ∝
1 + 0.912 d/u

1 + 0.25 d/u

Left-right parity-violating asymmetry at large Q2

ALR =
Q2GF

2
√

2πα

(
a(x) +

y(2 − y)

2 − 2y + y2
b(x)

)



PVDIS issues



Issues at large x
Target mass corrections

finite             effects (but leading twist!)M2/Q2 Georgi, Politzer, PRD14 (1976) 1829
Kretzer, Reno, PRD69 (2004) 034002

Higher twists
dynamical quark-quark correlations,          suppressed             1/Q2

Quark-hadron duality

WM, Ent, Keppel, Phys. Rept. 406 (2005) 127

low-W resonances conspire to produce scaling function

Large-x resummation

Corcella, Magnea, hep-ph/050742; Vogelsang, AIP Conf. Proc. 747 (2005) 9
Sterman, NPB281 (1987) 310; Catani, Trentadue, NPB327 (1989) 323

extend validity of  pQCD by resumming large-x logs
arising from soft & collinear gluons



Phenomenological higher twists

Liuti, Ent, Keppel, Niculescu,
Phys. Rev. Lett. 89 (2002) 162001

pQCD at Q2 ! 200 GeV2 shown for comparison demon-
strates the large effect of pQCD corrections above x"
0:2. In Fig. 2, we show the low W2 data extracted here,
along with large W2 data from [24,25]. Note that the data
in the resonance region smoothly blend to the deep in-
elastic—another manifestation of BG duality. The curves
correspond to our calculations including pQCD# TMC
at NLO (dashes), and pQCD# TMC with resummation
(full). The dots in each curve represent regions where
TMC are uncertain. The effect we find is qualitatively
similar to that found in [9,10], in that over the range
0:45 $ x $ 0:85, higher order perturbative contributions,
in this case large x resummation, improve the agreement
with the data. Substantial discrepancies remain, which we
interpret in terms of dynamical HT corrections. We pa-
rametrize H%x;Q2& as

H%x;Q2& ! FpQCD#TMC
2 %x;Q2&CHT%x&: (3)

Equation (3) is motivated by the lack of knowledge of the
anomalous dimensions of the twist-4 operators, a reason-
able assumption within the precision of the data (see also
[26]). Our fixed W2 approach enables us to extract CHT
from the resonance region and from the DIS region,
separately.

In Fig. 3(a) we show the coefficient CHT, Eq. (3), ex-
tracted from the following: (i) DIS data with W2 '
4 GeV2, (ii) the resonance region, W2 < 4 GeV2, as
well as (iii) averaged over the entire range of W2. The
figure also shows the range of extractions previous to the
current one [11,27]. We observe in all three cases, values
for CHT smaller than the ones in [11,27], because of the
effect of large x resummation. We have checked that our
results without resummation are consistent with a pre-
vious extraction using moments of the structure function
[12]. Most importantly, while the large W2 data track a
curve that is consistent with the 1=W2 behavior expected
from most models [28], the low W2 data yield a much
smaller value for CHT, and they show a bend over of the
slope vs x, already predictable from a similar behavior of
the slopes at low W2 in Fig. 2. This surprising effect is not
a consequence of the interplay of higher order corrections
and the HT terms, but just of the extension of our detailed
pQCD analysis to the large x, low W2 kinematical region.
In order to ascertain whether the discrepancy between the
low W2 and large W2 values of CHT are due to O%1=Q4&
terms in the twist expansion, Eq. (1), which could become
more important at low W2, we have extracted for each
resonance the quantity !H%x;Q2&, defined as

Fexp
2

FpQCD#TMC
2

! 1# CHT%x&
Q2 # !H%x;Q2&; (4)

where CHT%x& coincides with the value fitted at large W2.
From Fig. 3(b) one sees that !H%x;Q2& is negative for all
lower W2 ( $ 3:4 GeV2) bins, as expected if a cancella-
tion among higher order inverse powers were to occur,
consistent with the requirement of parton-hadron duality.
However, we uncover a nontrivial Q2 dependence of this
term: one can see a sharp change between the behavior of
the higher mass resonances and that of the N ( ! tran-
sition region which shows a distinctively steeper fall with

Q2 (GeV2)

F
2p (

x,
Q

2 )

FIG. 2 (color online). Comparison of pQCD# TMC calcula-
tions at NLO (dashed lines) and with resummation (full lines),
with current large x data. The solid dots are in the resonance
region, 1:3 $ W2 $ 3:4 GeV2; the open triangles correspond to
W2 $ 1:3 GeV2. The dotted lines represent the regions where
TMC contributions are uncertain.

x

C
H

T(
x)

 (G
eV

2 )

Q2 (GeV2)

∆H
(x

,Q
2 )

FIG. 3 (color online). (a) Coefficient CHT, Eq. (3), extracted
from DIS data with W2 ' 4 GeV2 (solid dots), from the reso-
nance region, W2 < 4 GeV2 (stars) and averaged over the entire
range of W2 (open dots). The shaded area summarizes extrac-
tions previous to the current one. A dotted line at zero is added
to guide the eye; (b) !H, Eq. (4), extracted at fixed values of
W2 as described in the text, and plotted vs Q2. The figure
further elucidates a breakdown of the twist expansion at low
W2, already visible in (a).
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+ TMC
+ large-x
resummation

F2(x,Q2) = FLT
2

(x,Q2)
(
1+

CHT(x)
Q2

+!H(x,Q2)
)

large-x resummation
reduces CHT

lower-W data require 
negative         term1/Q4

(see also Alekhin, Kulagin, Petti  2005)

parameterized total structure function as



=
∞∑

j=0

(
M2

Q2

)j
(n + j)!

j!(n − 2)!

An+2j

(n + 2j)(n + 2j − 1)

n-th moment of       structure function (leading twist!)F2

∫
dx xn−2 F2(x, Q2)Mn

2 (Q2) =

An =

∫ 1

0

dy yn F (y)

Target mass corrections

“quark distribution function”

F (y) ≡
F2(y)

y2

Georgi, Politzer (1976)



inverse Mellin transform (+ tedious manipulations)

r =
√

1 + 4x2M2/Q2ξ =
2x

1 + r

... similarly for other structure functions F1, FL

FGP
2 (x, Q2) =

x2

r3
F (ξ) + 6

M2

Q2

x3

r4

∫ 1

ξ

dξ′ F (ξ′)

+ 12
M4

Q4

x4

r5

∫ 1

ξ

dξ′
∫ 1

ξ′

dξ′′ F (ξ′′)

Target mass corrections



Christy et al. (2005)

no TMCTMC

TMCs significant at large          , especially for x2/Q2
FL
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Fig. 14. Proton F
p
2 structure function in the resonance region for several values of Q2, as indicated. Data from Jefferson Lab

Hall C [65,66] are compared with some recent parameterizations of the deep inelastic data at the same Q2 values (see text).

Comparison of resonance region data with PDF-based global fits allows the resonance–scaling com-

parison to be made at the same values of (x, Q2), making the experimental signature of duality less

ambiguous. Such a comparison is presented in Fig. 14 for F
p
2 data from Jefferson Lab experiment E94-

110 [65,66], with the data bin-centered to the values Q2 = 1.5, 2.5 and 3.5 GeV2 indicated. These F
p
2

data are from an experiment capable of performing longitudinal/transverse cross section separations, and

so are even more precise than those shown in Figs. 11–13.

The smooth curves in Fig. 14 are the perturbative QCD fits from the MRST [67] and CTEQ [68]

collaborations, evaluated at the same Q2 values as the data. The data are shown with target mass (TM)

corrections, which are calculated according to the prescription of Barbieri et al. [16]. The SLAC curve

is a fit to deep inelastic scattering data [69], which implicitly includes target mass effects inherent in

the actual data. The target mass corrected pQCD curves appear to describe, on average, the resonance

strength at each Q2 value. Moreover, this is true for all of the Q2 values shown, indicating that the

resonance averages must be following the same perturbative Q2 evolution [60] which governs the pQCD

parameterizations (MRST and CTEQ). This demonstrates even more emphatically the striking duality

between the nominally highly nonperturbative resonance region and the perturbative scaling behavior.

An alternate approach to quantifying the observation that the resonances average to the scaling curve

has been used recently by Alekhin [70]. Here the differences between the resonance structure func-

tion values and those of the scaling curve, !F
p
2 , are used to demonstrate duality, as shown in Fig. 15,

Target mass corrections



Threshold problem

if                          at largeF (y) ∼ (1 − y)β y

then since ξ0 ≡ ξ(x = 1) < 1

F (ξ0) > 0

FTMC
i (x = 1, Q2) > 0

is this physical?

problem with GP formulation?



work with     dependent PDFs

Steffens, WM
PRC 73 (2006) 055202

ξ0

n-th moment       of distribution function An

An =

∫ ξmax

0

dξ ξn F (ξ)

what is        ?ξmax

GP use                                unphysicalξmax = 1, ξ0 < ξ < 1

strictly, should use                               ξmax = ξ0

Possible solution



what is effect on phenomenology?

try several  “toy distributions”

q(ξ) = N ξ−1/2 (1 − ξ)3 , ξmax = 1

standard TMC (“sTMC”)

modified TMC (“mTMC”)

q(ξ) = N ξ−1/2 (1 − ξ)3 Θ(ξ − ξ0), ξmax = ξ0

threshold dependent (“TD”)

qTD(ξ) = N ξ−1/2 (ξ0 − ξ)3 , ξmax = ξ0

Possible solution
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FIG. 3: The x dependence of the F2 structure function at Q2 = 1 GeV2 (upper) and 5 GeV2 (lower). The effects of TMCs
on the (input) scaling distribution (dotted curve) are illustrated for the sTMC (dashed) and mTMC (double-dot–dashed)
prescriptions, and compared with the effects on the (input) TD-distribution ξqTD(ξ) (dot-dashed) using the TD approach
(prescription C, solid).

the sTMC and mTMC prescriptions, the corrected structure function is significantly larger in magnitude than for the
TD prescription at intermediate and large x. For the sTMC case in particular, it is also seen to approach a nonzero
value in the x → 1 limit. This result suggests that the evaluation of the twist-two part of the longitudinal structure
function at low Q2 may also need to be reassessed in phenomenological analyses, especially at intermediate and large
x.

TMCs in F2

correct threshold behavior for  “TD” correction

non-zero
at x = 1



5

from 0 to 1 (specifically, in the integrals for An, H(ξ) and G(ξ)). Here the normalization N ensures that the
distribution integrates to unity. We denote this prescription the “standard TMC” (sTMC).

(B) Integrate a modified distribution which vanishes for ξ > ξ0, as implied by Eq. (7)1:

q(ξ) = N ξ−1/2(1 − ξ)3 Θ(ξ − ξ0) . (19)

We denote this prescription the “modified TMC” (mTMC).
(C) Use a “threshold dependent” (TD) quark distribution which vanishes in the physical limit:

qTD(ξ) = N ξ−1/2(ξ0 − ξ)3 . (20)

0 1 2 3 4

0.8

0.9

1

1.1
µ
2

n
 /

 A
n

Q
2 2

(GeV  )

sTMC

TD

mTMC

n=2

FIG. 1: Ratio of the n = 2 Nachtmann moment of the F2 structure function and the n = 2 moment of the quark distribution,
as a function of Q2. The curves correspond to prescriptions A [“sTMC”] (dotted), B [“mTMC”] (dashed) and C [“TD”] (solid).

Note that because of the upper limit in Eq. (7), An itself will be M2/Q2 dependent for prescriptions B and C. The
results for the ratio µn

2/An of the n = 2 moments are displayed in Fig. 1 for the three cases, with prescriptions A, B
and C corresponding to the dotted, dashed and solid curves, respectively. Comparing the sTMC and mTMC results,
one can see a reduced Q2 dependence when the integrals are restricted to ξ < ξ0. However, a much more dramatic
change occurs when the quark distribution is constrained to vanish at ξ0. This renders the Nachtmann moment almost
equal to the moment of the quark distribution for virtually all Q2 considered. Certainly for Q2 > 1 GeV2 there is no
visible deviation of the ratio from unity. Even for very small Q2, Q2 ∼ 0.3 GeV2, the ratio differs from unity by only
∼ 0.7% (of course the OPE itself may not be valid at such low values of Q2).

Similarly, the ratios for the n = 4 and n = 6 moments are shown in Fig. 2. The deviation of the ratio from unity
for the sTMC approach is between 10%− 20% for Q2 <

∼ 1 GeV2, while that for the modified TMC with prescription
B is of the order of 5% over the same Q2 region. On the other hand, for the threshold dependent prescription C, the
deviation from unity remains around 1% even at these low Q2 values.

A consequence of prescription C is that the moments of the parton distribution are Q2 dependent. This seems to
be an inevitable consequence if the Nachtmann moments of the structure function are to be equal to the moments of
the parton distribution for all Q2. Note that this Q2 dependence is not of higher twist or perturbative QCD origin,
but arises solely from kinematics. Nevertheless, this avoids the more serious problems which arise within the sTMC

1 We believe this was also the implication of De Rújula et al. [11]

Nachtmann     momentsF2

moment of structure function agrees with 
moment of PDF to 1% down to very low Q2

designed to remove target mass effects explicitly
from structure function moment

Nachtmann 
moment



Higher twists

how important will HT be for PVDIS at 12 GeV?

ultimately, determine empirically

need lever arm in Q   for fixed x2

test importance of  TMCs in relevant kinematics

perform combined LT+HT fit to data, including
higher order pQCD,  TMC & phenomenological
1/      effectsQ  2



Intrinsic sea quarks

Intrinsic (nonperturbative) sea quarks can exist at large x

cf. perturbative sea at small x

Intrinsic charm can arise through virtual fluctuations

p → D̄0(uc̄) + Λc(udc)

c(x) ≈
3

2
fΛc/N (3x/2)

c̄(x) ≈ fD/N (x)

hard x distribution because of large c mass

different shapes
   for c and c



Intrinsic sea quarks
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5.2 Meson cloud model (IC2)

An alternative to the five-quark intrinsic charm model was
considered in [28–31], in which the charm sea was assumed
to arise from the quantum fluctuation of the nucleon to a
virtual D̄0 + Λ+

c configuration. In the following we shall
refer to this model as “IC2”. The nucleon charm radius
[28] and the charm quark distribution [29] were both esti-
mated in this framework. Furthermore, the effects of hard
charm distributions on large-x HERA cross sections, and
in particular on the so-called HERA anomaly [32,33], were
studied in [30].

The meson cloud model for the long-range structure of
the nucleon has been used extensively to describe various
flavor symmetry breaking phenomena observed in deep-
inelastic scattering and related experiments. It offers a
natural explanation of the d excess in the proton over u
[34,35] in terms of a pion cloud, which itself is a neces-
sary ingredient of the nucleon by chiral symmetry. It also
provides an intuitive framework to study the strangeness
content of the nucleon, through the presence of the kaon
cloud [36]. Whether the same philosophy can be justified
for a cloud of heavy charm mesons and baryons around the
nucleon is rather more questionable given the large mass
of the fluctuation. Nevertheless, to a crude approximation,
one may take the meson cloud framework as indicative of
the possible order of magnitude and shape of the non-
perturbative charm distribution. Furthermore, a natural
prediction of this model is that the c and c distributions
are not symmetric.

In the meson cloud model, the distribution of charm
and anticharm quarks in the nucleon at some low hadronic
scale can be approximated by [30]

cIC2(x) ≈ 3
2
fΛc/N (3x/2), (15a)

cIC2(x) ≈ fD̄/N (x), (15b)

where

fD̄/N (x) =
1

16π2

∫ ∞

0
dk2

⊥
g2(k2

⊥, x)
x(1 − x)(s − M2)2

×
(

k2
⊥ + [MΛc − (1 − x)M ]2

1 − x

)
(16)

is the light-cone distribution of D̄0 mesons in the nu-
cleon, and fΛc/N (x) = fD̄/N (1 − x) is the correspond-
ing distribution of Λ+

c baryons. In (16) the function g de-
scribes the extended nature of the D̄ΛcN vertex, with
the momentum dependence parameterized by g2(k2

⊥, x) =
g2
0(Λ2 + M2)/(Λ2 + s), where s is the D̄Λc center of mass

energy squared and g0 the D̄ΛcN coupling constant at
the pole, s = M2. As a first approximation, one might
take g0 to be of the same order of magnitude as the πNN
coupling constant. In [37] this coupling constant was esti-
mated within a QCD sum rule calculation.

5.3 Intrinsic charm distributions

The c and c distributions in the intrinsic charm models
IC1 and IC2 are shown in Fig. 4, each normalized to a

Fig. 4. Charm quark distributions from the intrinsic charm
models IC1 [30] (solid) and IC2 [4] (dashed), both normalized
to 1%, and from the MRST parameterization [12] (with maxi-
mal gluon) at Q2 = 5 GeV2 (dotted)

common value of 1%. For the IC2 model this corresponds
to a cutoff Λ ≈ 2.2 GeV (for a probability of 0.5% one
would need Λ ≈ 1.7 GeV). Quite interestingly, the shapes
of the c quark distributions are quite similar in the two
models, with xc peaking at around x ∼ 0.3. However,
because the IC2 model gives a significantly harder c dis-
tribution, while IC1 implies that c and c̄ are equal, the
resulting structure function, F c

2 , will be somewhat harder
in the IC2 model. For comparison, a typical (soft) per-
turbatively generated charm distribution is also shown in
Fig. 4, evaluated from the MRST parameterization [12]
(with the maximal gluon) at Q2 = 5 GeV2.

The effects of the modified boundary conditions incor-
porating non-zero intrinsic charm distributions are shown
in Fig. 5 for the GRV parameterization [13] and for 1% in-
trinsic charm normalizations, at Q2 = 25, 45 and 60 GeV2.
The data at 60 GeV2 are well fitted with a 1% IC1 com-
ponent, although with the IC2 model one slightly overes-
timates the x = 0.44 point, due to its very hard c̄ dis-
tribution. At lower Q2 values, however, the addition of a
1% intrinsic charm component, from either model, over-
estimates the large-x points. This finding is essentially in-
dependent of the parton distribution functions employed,
as Fig. 6 illustrates for the MRST distributions [12]. From
this one can conclude that with a 1% intrinsic charm com-
ponent one cannot simultaneously resolve the large-x dis-
crepancy for the large-Q2 data, and maintain a satisfac-
tory fit to the data at lower Q2.

To compare with the procedure for incorporating in-
trinsic charm adopted in the earlier analysis in [5], we show
in Fig. 7 the F c

2 obtained from the FFNS through (11), and
the O(αs) corrections to the intrinsic charm component,
F c(IC)

2 – see (57) of [5]. (Note that although the FFNS
curves appear to lie slightly below the data for Q2 = 25
and 45 GeV2, the inclusion of O(α2

s ) corrections leads to a
slight improvement for the lower Q2 data, without much
effect on the data at 60 GeV2 [13].) The results are qualita-
tively similar to those obtained from the full interpolating
scheme, namely the data at different Q2 seem to require
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Fig. 9. As in Fig. 7, but with different normalizations for the
IC1 and IC2 components

More challenging still it is to identify possible non-
perturbative effects in the charm sector, especially since
the magnitude of the total charm component of non-charm
hadrons is tiny. Nevertheless, a number of pioneering stud-
ies [4–6] of various charm production reactions have left us
with lingering doubts as to whether perturbative QCD is
the full story behind these processes. On the other hand,
the evidence does not appear to be conclusive enough to
warrant introduction of intrinsic charm distributions in
global data parameterizations [12,13,39], which to date
have generated the charm structure function purely per-
turbatively.

The present analysis has been an attempt to resolve
the issue of whether the charm electroproduction data do
indeed support the existence of non-perturbative compo-
nents of the nucleon wave function, or whether they can
be understood within conventional perturbative dynam-
ics. To this effect we have used the latest available tech-
nology to describe charm production over the entire range

of x and Q2 accessible to experiment. Our approach con-
sistently interpolates between the two asymptotic regions
of massless evolution at large Q2 and the photon–gluon
fusion process at low Q2, and includes quark and target
mass effects and corrections for mass thresholds.

To a certain extent our findings confirm the existing
state of affairs, in which some of the data show no evi-
dence at all for intrinsic charm, while other data cannot
be fitted without additional non-perturbative input. Even
within the rather different models of intrinsic charm con-
sidered here, with varying normalizations, it seems diffi-
cult to simultaneously fit the entire data set in terms of a
single intrinsic charm scenario – although there may be a
slight preference for intrinsic charm in model IC2 at a level
of about 0.4%. The clearest conclusion that one can draw
from this is that more quality data are urgently needed to
settle the issue. In particular, while the small-x domain
seems to be relatively well under control, the large-x re-
gion, where cross sections are small and measurements
more difficult, must be the focus of future experimental
efforts if the non-perturbative structure of the nucleon sea
is to be resolved.
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Summary

d  quark distribution poorly known at large x

PVDIS data will determine d/u ratio at large x,
free of any nuclear effects issues

complement e scattering data (e.g. BONUS,  A=3 DIS)

need to take care of some background issues

similar issues relevant for other d/u experiments


