

University of New Hampshire Colloquium, March 19, 2012

Quark-Hadron Duality in Electron-Nucleon Scattering

Wally Melnitchouk

- Historical perspective
 → examples from Nature
- Duality and Quantum ChromoDynamics
 - \rightarrow twists and moments
 - \rightarrow nonperturbative models
- Implications for quark distributions
- Outlook

- Strong nuclear force described (in principle) by theory of Quantum ChromoDynamics (QCD)
 - → governed by size of quark-gluon coupling constant $\alpha_{\rm QCD}$ (or α_s)

→ in practice, full understanding of *hadron & nuclear* structure and interactions in terms of *quarks & gluons* remains a challenge even after 40 years!

 $\alpha_s\,$ large, cannot describe observables in terms of quarks perturbatively

- → requires nonperturbative methods such as *lattice* QCD
- meson & baryon degrees of freedom prominent

Duality hypothesis: complementarity between quark and hadron descriptions of observables

 can use either set of *complete* basis states to describe physical phenomena

In practice, at finite energy typically have access only to *limited* set of basis states

- In practice, at finite energy typically have access only to *limited* set of basis states
- Question is not why duality exists, but how it arises where it exists

Duality in hadron-hadron scattering

Duality in e^+e^- annihilation

 total hadronic cross section at high energy averages resonance cross section

Duality in heavy meson decays

 $m_Q + m_{Q'} \gg m_Q - m_{Q'} \gg \Lambda_{\rm QCD}$

sum over hadronic-level decay rates = quark-level decay rate

$$\Gamma^{\mathrm{PS}} + \Gamma^{\mathrm{V}} \longleftrightarrow \Gamma^{q}$$

Voloshin, Shifman, SJNP 41, 120 (1985); Isgur, PLB 448, 111(1999)

Duality in electron-nucleon scattering

"Bloom-Gilman duality"

"

Electron-nucleon scattering

 $\blacksquare \quad \text{Inclusive cross section for } eN \to eX$

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{4\alpha^2 E'^2 \cos^2\frac{\theta}{2}}{Q^4} \left(2\tan^2\frac{\theta}{2}\frac{F_1}{M} + \frac{F_2}{\nu}\right)$$

$$\nu = E - E'$$

$$Q^{2} = \vec{q}^{2} - \nu^{2} = 4EE' \sin^{2} \frac{\theta}{2} \quad \begin{cases} x = \frac{Q^{2}}{2M\nu} \\ Bjorken \ scaling \ variable \end{cases}$$

\blacksquare F_1 , F_2 structure functions

 \rightarrow contain all information about structure of nucleon

Electron-nucleon scattering

Bjorken variable in terms of $Q^2 \& W$: $x = \frac{Q^2}{W^2 - M^2 + Q^2}$

Duality in electron-nucleon scattering

Niculescu et al., PRL **85**, 1182 (2000) WM, Ent, Keppel, PRep. **406**, 127 (2005)

average over (strongly Q^2 dependent) resonances $\approx Q^2$ independent scaling function

"Nachtmann" scaling variable
$$\xi = \frac{2x}{1 + \sqrt{1 + 4M^2x^2/Q^2}}$$

Duality in electron-nucleon scattering

also exists *locally* in individual resonance regions

Duality and QCD

- Operator product expansion
 - \rightarrow expand *moments* of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} \ F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

matrix elements of operators with specific "twist" $\boldsymbol{\tau}$

 $\tau = \text{dimension} - \text{spin}$

Duality and QCD

- Operator product expansion
 - \rightarrow expand *moments* of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} \ F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

de Rujula, Georgi, Politzer Ann. Phys. **103**, 315 (1975)

- If moment ≈ independent of Q^2 → "higher twist" terms $A_n^{(\tau>2)}$ small

Analysis of JLab F_2^p resonance region data

Analysis of (latest) JLab F_2^p resonance region data

higher twists < 10-15% for $Q^2 > 1 \text{ GeV}^2$

Resonances & twists

- **Total "higher twist" is** *small* at scales $Q^2 \sim \mathcal{O}(1 \text{ GeV}^2)$
- On average, nonperturbative interactions between quarks and gluons not dominant (at these scales)
 - \rightarrow nontrivial interference between resonances

- Can we understand this dynamically, at quark level?
 → is duality an accident?
- Can we use resonance region data to learn about leading twist structure functions?
 - expanded data set has potentially significant implications for global quark distribution studies

Consider simple quark model with spin-flavor symmetric wave function

low energy

 \rightarrow coherent scattering from quarks $d\sigma \sim \left(\sum_{i} e_{i}\right)^{2}$

high energy

 \rightarrow incoherent scattering from quarks $d\sigma \sim \sum e_i^2$

- For duality to work, these must be equal
 - \rightarrow how can <u>square of a sum</u> become <u>sum of squares</u>?

Dynamical cancellations

→ e.g. for toy model of two quarks bound in a harmonic oscillator potential, structure function given by

$$F(\nu, \mathbf{q}^2) \sim \sum_n \left| G_{0,n}(\mathbf{q}^2) \right|^2 \delta(E_n - E_0 - \nu)$$

- → charge operator $\Sigma_i \ e_i \exp(i\mathbf{q} \cdot \mathbf{r}_i)$ excites even partial waves with strength $\propto (e_1 + e_2)^2$ odd partial waves with strength $\propto (e_1 - e_2)^2$
- $\rightarrow \text{ resulting structure function} \\ F(\nu, \mathbf{q}^2) \sim \sum_n \left\{ (e_1 + e_2)^2 \ G_{0,2n}^2 + (e_1 e_2)^2 \ G_{0,2n+1}^2 \right\}$
- → if states degenerate, cross terms (~ e_1e_2) cancel when averaged over nearby even and odd parity states

Close, Isgur, PLB 509, 81 (2001)

Dynamical cancellations

→ duality is realized by summing over at least one complete set of <u>even</u> and <u>odd</u> parity resonances

Close, Isgur, PLB 509, 81 (2001)

 \rightarrow in NR Quark Model, even & odd parity states generalize to 56 (L=0) and 70 (L=1) multiplets of spin-flavor SU(6)

representation	² 8[56 ⁺]	⁴ 10 [56 ⁺]	² 8[70 ⁻]	⁴ 8[70 ⁻]	² 10 [70 ⁻]	Total
$F^p_1 \\ F^n_1$	$\frac{9\rho^2}{(3\rho+\lambda)^2/4}$	$\frac{8\lambda^2}{8\lambda^2}$	$\frac{9\rho^2}{(3\rho-\lambda)^2/4}$	$0 \\ 4\lambda^2$	$\lambda^2 \ \lambda^2$	$\frac{18\rho^2 + 9\lambda^2}{(9\rho^2 + 27\lambda^2)/2}$

 λ (ρ) = (anti) symmetric component of ground state wave function

Close, WM, PRC 68, 035210 (2003)

Dynamical cancellations

→ in SU(6) limit $\lambda = \rho$, with relative strengths of $N \rightarrow N^*$ transitions

SU(6):	$[{f 56},{f 0^+}]^{f 2}{f 8}$	$[{f 56}, 0^+]^{f 4}{f 10}$	$[{f 70}, 1^-]^{f 28}$	$[{f 70}, 1^-]^4 8$	$[{f 70},1^-]^{f 2}10$	total
F_1^p	9	8	9	0	1	27
F_1^n	4	8	1	4	1	18

 \rightarrow summing over all resonances in 56⁺ and 70⁻ multiplets

$$\frac{F_1}{F_1^p} = \frac{18}{27} = \frac{2}{3}$$

 \rightarrow at the quark level, n/p ratio is

$$\frac{F_1^n}{F_1^p} = \frac{4d+u}{d+4u} = \frac{6}{9} = \frac{2}{3} \quad \text{if } u = 2d$$

Accidental cancellations of charges?

proton HT ~ 1 -
$$\left(2 \times \frac{4}{9} + \frac{1}{9}\right) = 0$$
!
neutron HT ~ 0 - $\left(\frac{4}{9} + 2 \times \frac{1}{9}\right) \neq 0$
Brodsky
hep-ph/0006310

→ duality in proton a *coincidence*!
→ should <u>not</u> hold for neutron

Neutron: the smoking gun

- Duality in *neutron* more difficult to test because of absence of free neutron targets
- New extraction method (using iterative procedure for solving integral convolution equations) has allowed first determination of F_2^n in resonance region & test of neutron duality

Malace, Kahn, WM, Keppel PRL **104**, 102001 (2010)

Neutron: the smoking gun

- → "theory": fit to W > 2 GeV data Alekhin et al., 0908.2762 [hep-ph]
- → locally, violations of duality in resonance regions < 15-20% (largest in ∆ region)

$$\rightarrow$$
 globally, violations < 10%

Malace, Kahn, WM, Keppel PRL **104**, 102001 (2010)

duality is <u>not</u> accidental, but a general feature of resonance-scaling transition!

Neutron: the smoking gun

- → "theory": fit to W > 2 GeV data Alekhin et al., 0908.2762 [hep-ph]
- → locally, violations of duality in resonance regions < 15-20% (largest in ∆ region)

$$\rightarrow$$
 globally, violations < 10%

Malace, Kahn, WM, Keppel PRL **104**, 102001 (2010)

use resonance region data to learn about leading twist structure functions? CTEQ-JLab (CJ) global PDF analysis *

- New global NLO analysis of expanded set of p and d data (DIS, pp, pd) including large-x, low-Q² region
- Systematically study effects of $Q^2 \& W$ cuts \rightarrow down to $Q \sim m_c$ and $W \sim 1.7$ GeV
- Correct for nuclear effects in the deuteron, subleading 1/Q² corrections (target mass, higher-twists)
- Dependence on choice of PDF parametrization

CJ collaboration: A. Accardi, J. Owens, WM (theory) E. Christy, C. Keppel, P. Monaghan, L. Zhu (expt.) http://www.jlab.org/CJ/

CJ kinematic cuts

PDFs remarkably <u>stable</u> with respect to cut reduction, as long as finite- Q^2 corrections included

Accardi et al. PRD 81, 034016 (2010)

 \rightarrow d quark behavior driven by nuclear corrections at high x

Larger database with weaker cuts leads to significantly reduced errors, especially at large x

→ up to 40-60% error reduction when cuts extended into resonance region

Vital for large-x analysis, which currently suffers from large uncertainties (mostly due to nuclear corrections)

Accardi et al., PRD 84, 014008 (2011)

 uncertainty in d feeds into larger uncertainty in g at high x (important for LHC physics!)

Brady et al., arXiv:1110.5398

Large Hadron Collider (CERN)

pp collisions at $\sqrt{s} = 7$ TeV

Heavy Z', W' boson production

- Some extensions of Standard Model predict heavy versions of W, Z bosons
 - Sequential Standard Model (SSM)
 (assume same couplings as SM W, Z bosons)
 - → Grand Unified Theories e.g. E_6 London, Rosner (1986) $E_6 \rightarrow SO(10) \times U(1)_{\chi} \rightarrow SU(5) \times U(1)_{\psi} \times U(1)_{\chi}$

\rightarrow more exotic scenarios, *e.g.*

- scalar excitations in *R*-parity violating supersymmetric models *Hewett, Rizzo (1998)*
- spin-1 Kaluza-Klein excitations of SM
 bosons in presence of extra dimensions Antoniadis (1990)
- spin-2 excitations of the graviton

Randall, Sundrum (1999)

Heavy Z', W' boson production
Current limits on masses (for SSM; lower for other models)

 $\longrightarrow M_{Z'} > 1.83 \text{ TeV}$ $M_{W'} > 2.15 \text{ TeV}$ Atlas @ LHC

Heavy Z', W' boson production

■ Observation of new physics signals requires accurate determination of QCD backgrounds — depend on PDFs! (since $x_{1,2} \sim M_{Z',W'}$, large-x uncertainties scale with mass)

Heavy Z', W' boson production

- Observation of new physics signals requires accurate determination of QCD backgrounds depend on PDFs! (since $x_{1,2} \sim M_{Z',W'}$, large-x uncertainties scale with mass!)
 - for W'^- production

 \rightarrow dominated by $d * \overline{u} \longrightarrow$ dominated by d * u + u * d

> 100% uncertainties at large y !

Summary

Remarkable confirmation of quark-hadron duality in *proton* and *neutron* structure functions

 \rightarrow duality-violating higher twists ~ 10–15% in few-GeV range

- Confirmation of duality in *neutron* suggests origin in dynamical cancellations of higher twists
 - \rightarrow duality <u>not</u> due to accidental cancellations of quark charges
- Practical application of duality
 - → use resonance region data to constrain *leading twist* PDFs (global PDF analysis underway)
 - → stable fits at low Q^2 and large x with significantly reduced uncertainties

The End