JLab Users Group Town Meeting March 16, 2012

Quark spin distributions in the proton at large x

Wally Melnitchouk

- Most direct connection between quark distributions and models of nucleon structure is via valence quarks
 - \rightarrow most cleanly revealed at x > 0.4

$$F_2^p \approx \frac{4}{9}xu_v + \frac{1}{9}xd_v$$
$$F_2^n \approx \frac{1}{9}xu_v + \frac{4}{9}xu_v$$

Needed to understand backgrounds in searches for physics beyond the Standard Model in high-energy colliders e.g. the LHC

→ Q^2 evolution feeds *high* x, *low* Q^2 to *low* x, *high* Q^2 where *e.g.* Higgs, SUSY most likely to produce signals

Large-*x* PDFs

■ Nonperturbative & perturbative QCD predictions for d/u ratio in $x \rightarrow 1$ limit:

- $d/u \rightarrow 1/2$ SU(6) symmetry
- $d/u \rightarrow 0$ S = 0 qq dominance
- $d/u \rightarrow 1/5$

 $S_z = 0 \ qq$ dominance

•
$$d/u \to \frac{4\,\mu_n^2/\mu_p^2 - 1}{4 - \mu_n^2/\mu_p^2}$$

local quark-hadron duality* ($\mu_{p,n}$ magnetic moments)

see e.g. WM, Ent, Keppel Phys. Rep. **406**, 127 (2005) * structure function at $x \rightarrow 1$ given by elastic form factor at $Q^2 \rightarrow \infty$

EMC effect in deuteron

 \blacksquare No free neutron targets \rightarrow use d as effective n target

 uncertainties in nuclear corrections at large x (short-range NN interaction, N off-shell deformation)
 leads to large uncertainties in d quark at x > 0.5

CJ (CTEQ-JLab) global PDF analysis

 \rightarrow nuclear correction uncertainties sizable at x > 0.5

 \rightarrow x \rightarrow 1 limiting value depends critically on deuteron model

CJ (CTEQ-JLab) global PDF analysis

- very little effect on u quark PDF
 (tightly constrained by DIS & DY proton data)
- → gluon PDF <u>anti-correlated</u> with d quark (g compensates for smaller d quark contribution in jet data)
- \rightarrow uncertainty in d feeds into larger uncertainty in g at high x

Heavy Z', W' boson production

- Observation of new physics signals requires accurate determination of QCD backgrounds depend on PDFs! (since $x_{1,2} \sim M_{Z',W'}$, large-x uncertainties scale with mass!)
 - for W'^- production

 \rightarrow dominated by $d * \bar{u}$

 \rightarrow dominated by d * u + u * d

> 100% uncertainties at large y !

Brady, Accardi, WM, Owens arXiv:1110:5398

12 GeV *d/u* experiments

- Nuclear correction uncertainties expected to be resolved with new experiments at JLab-12 GeV uniquely sensitive to *d* quarks (up to $x \sim 0.85$)

 - → DIS from³He-tritium mirror nuclei e^{3} He(³H) → $e^{3}X$ ("MARATHON") E12-10-103
 - $\rightarrow \text{PVDIS from protons} \\ \vec{e}_L(\vec{e}_R) \ p \rightarrow e \ X \quad (\text{``SoLID''})$ E12-10-007

12 GeV *d/u* experiments

• will determine d/u free of nuclear uncertainties to $x \sim 0.8$

Spin-dependent PDFs at large x

- Nonperturbative & perturbative QCD predictions for $\Delta q/q$ ratio in $x \rightarrow 1$ limit:
 - $\Delta u/u \rightarrow 2/3$ $\Delta d/d \rightarrow -1/3$ } SU(6) symmetry

•
$$\Delta u/u \to 1$$

 $\Delta d/d \to -1/3$ } $S = 0$ qq dominance

•
$$\Delta u/u \to 1$$

 $\Delta d/d \to 1$ } $S_z = 0 \ qq \ dominance$
 $\underline{\Delta d/d} \to 1$ } $\underline{Or} \ local \ duality$

 \rightarrow sign of d quark polarization uncertain at large x !

Spin-dependent PDFs at large x

Inclusive DIS measurements from polarized ³He at 12 GeV will constrain A_1^n and $\Delta d/d$ up to $x \sim 0.75$

• planned measurement up to x = 0.77 (0.89) in DIS (resonance)

Nuclear effects in spin structure functions

- At $x \ge 0.7$, nuclear correction uncertainties also expected to be large in polarized structure functions & asymmetries
 - \rightarrow will contaminate extraction on free \vec{n} structure

Nuclear effects in spin structure functions

- At $x \ge 0.7$, nuclear correction uncertainties also expected to be large in polarized structure functions & asymmetries
 - → difficult to observe $\log^2(1-x)$ enhancement of q^{\downarrow} predicted from $L_{7}=1$ component of wave function

Avakian, Brodsky, Deur, Yuan PRL **99**, 082001 (2007)

Nuclear effects in spin structure functions

- At $x \ge 0.7$, nuclear correction uncertainties also expected to be large in polarized structure functions & asymmetries
 - \rightarrow more significant effects expected in resonance region at even smaller x

Kulagin, WM PRC **78**, 065203 (2008)

- Are experiments which minimize or eliminate nuclear uncertainties at large x feasible?
 - → DIS from *polarized* ³He-tritium mirror nuclei $\vec{e}^{3} \vec{\mathrm{He}} (^{3} \vec{\mathrm{H}}) \rightarrow e X$ ("Polarized MARATHON")

Polarized EMC ratios for A=3 mirror nuclei

$$R^{^{3}\text{He}} = \frac{g_{1}^{^{3}\text{He}}}{2g_{1}^{^{p}} + g_{1}^{^{n}}} \qquad \qquad R^{^{3}\text{H}} = \frac{g_{1}^{^{3}\text{H}}}{g_{1}^{^{p}} + 2g_{1}^{^{n}}}$$

 \rightarrow extract *n/p* ratio from measured ³He-³H ratio

$$\frac{g_1^n}{g_1^p} = \frac{g_1^{^{3}\text{He}}/g_1^{^{3}\text{H}} - 2\mathcal{R}}{\mathcal{R} - 2g_1^{^{3}\text{He}}/g_1^{^{3}\text{H}}}$$

→ model dependence of $\mathcal{R} = R^{^{3}\text{He}}/R^{^{3}\text{H}}$ expected to be small

Test Bjorken sum rule for A=3 **nuclei**

$$\int_0^1 dx \, (g_1^{^3\mathrm{H}} - g_1^{^3\mathrm{He}}) = g_A^*$$

$$\rightarrow ~ 4\%$$
 smaller than g_A for free nucleon

 $\rightarrow \Delta$ degrees of freedom in A=3 nuclei Bissey, G

Bissey, Guzey, Strikman, Thomas PRC **65**, 064317 (2002)

 \rightarrow polarized tritium target?

- Are experiments which minimize or eliminate nuclear uncertainties at large x feasible?
 - → DIS from *polarized* ³He-tritium mirror nuclei $\vec{e}^{3} \vec{\mathrm{He}}(^{3} \vec{\mathrm{H}}) \rightarrow e X$ ("Polarized MARATHON")

Unpolarized electron – polarized proton asymmetry

 $\rightarrow g_1^{\gamma \omega} = \sum_q e_q g_V^q \Delta q$ independent combination of Δu and Δd

 \rightarrow extract Δd free of nuclear corrections!

Unpolarized electron – polarized proton asymmetry

 \rightarrow sensitivity to Δd at large x, free of nuclear corrections

- Are experiments which minimize or eliminate nuclear uncertainties at large x feasible?
 - → DIS from *polarized* ³He-tritium mirror nuclei $\vec{e}^{3} \vec{\mathrm{He}} (^{3} \vec{\mathrm{H}}) \rightarrow e X$ ("Polarized MARATHON")
 - $\rightarrow \text{PVDIS from polarized protons} \\ e \overrightarrow{p} \rightarrow e X \qquad \text{("Polarized SoLID")}$

- Are experiments which minimize or eliminate nuclear uncertainties at large x feasible?
 - → DIS from *polarized* ³He-tritium mirror nuclei $\vec{e}^{3} \vec{\mathrm{He}} (^{3} \vec{\mathrm{H}}) \rightarrow e X$ ("Polarized MARATHON")
 - $\rightarrow \text{PVDIS from polarized protons} \\ e \overrightarrow{p} \rightarrow e X \qquad \text{("Polarized SoLID")}$

→ other methods? (polarized ³He in BoNuS?)