

Hadronic effects in extractions of the weak mixing angle

Wally Melnitchouk

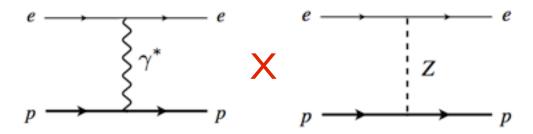
Peter Blunden (Manitoba)
Nathan Hall, Tony Thomas (Adelaide)

Parity-violating e scattering

lacksquare Left-right polarization asymmetry in $ec{e}\ p
ightarrow e\ p$ scattering

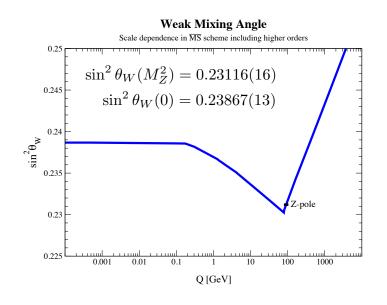
$$A_{\text{PV}} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \longrightarrow \frac{G_F Q_W^p}{4\sqrt{2}\pi\alpha} t \qquad t = (k_e - k_e')^2$$

→ measures interference between e.m. and weak currents

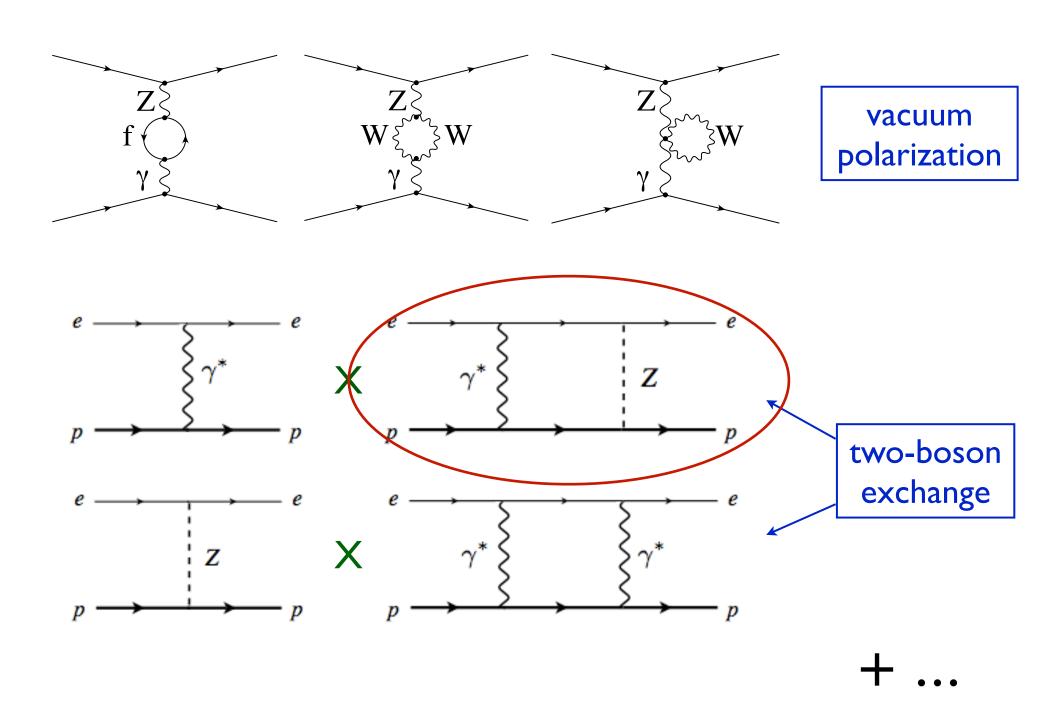


→ in forward limit, gives proton weak charge

$$Q_W^p = 1 - 4\sin^2\theta_W$$
 (tree level)



Corrections to proton weak charge



Corrections to proton weak charge

Including higher order radiative corrections

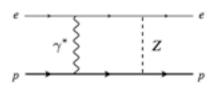
$$Q_W^p = (1 + \Delta \rho + \Delta_e)(1 - 4\sin^2\theta_W(0) + \Delta_e') + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z} \longrightarrow \text{box diagrams}$$

$$= 0.0713 \pm 0.0008$$
Erler et al., PRD 72, 073003 (2005)

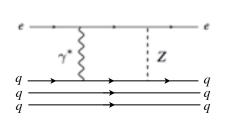
- → WW and ZZ box diagrams dominated by short distances, evaluated perturbatively (WW box gives ~ 25% correction!)
- \rightarrow γZ box diagram sensitive to long distance physics, has two contributions $\Box_{\alpha Z} = \Box^A_{ZZ} + \Box^V_{ZZ}$

$$\Box_{\gamma Z} = \Box_{\gamma Z}^{A} + \Box_{\gamma Z}^{V}$$
vector e – axial h axial e – vector h (finite at E =0) (vanishes at E =0)

- Axial h correction $\Box_{\gamma Z}^{A}$ dominant γZ correction in atomic parity violation at very low (zero) energy
 - → computed by Marciano & Sirlin (1980s) as sum of two parts:



★ low-energy part approximated by Born contribution (elastic intermediate state)



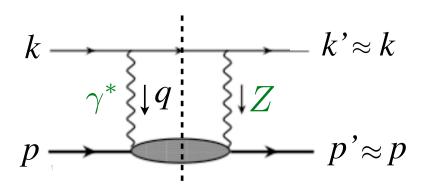
 \bigstar high-energy part (above scale $\Lambda \sim 1~{\rm GeV})$ computed in terms of scattering from free quarks

$$\Box_{\gamma Z}^{A} = \frac{5\alpha}{2\pi} (1 - 4\sin^2\theta_W) \left[\ln\frac{M_Z^2}{\Lambda^2} + C_{\gamma Z}(\Lambda) \right]$$

$$\approx 0.0052(5) \qquad \text{short-distance} \qquad \text{long-distance} \approx 3/2 \pm 1$$

Marciano, Sirlin, PRD 29, 75 (1984); Erler et al., PRD 68, 016006 (2003)

- Axial h correction $\Box_{\gamma Z}^{A}$ dominant γZ correction in atomic parity violation at very low (zero) energy
 - evaluate using forward dispersion relations with realistic input (inclusive structure function)



forward limit $t = (k - k')^2 \rightarrow 0$ $s = (k + p)^2$ = M(M + 2E)

 \bigstar axial *h* contribution *anti*symmetric under $E' \longleftrightarrow -E'$:

$$\Re e \ \Box_{\gamma Z}^{A}(E) = \frac{2}{\pi} \int_{0}^{\infty} dE' \frac{E'}{E'^{2} - E^{2}} \ \Im m \ \Box_{\gamma Z}^{A}(E')$$

negative energy part corresponds to crossed box (crossing symmetry $s \to u$)

lacktriangle Imaginary part given by interference $F_3^{\gamma Z}$ structure function

$$\mathcal{I}m \ \Box_{\gamma Z}^{A}(E) = \frac{1}{(2ME)^{2}} \int_{M^{2}}^{s} dW^{2} \int_{0}^{Q_{\text{max}}^{2}} dQ^{2} \, \frac{v_{e}(Q^{2}) \, \alpha(Q^{2})}{1 + Q^{2}/M_{Z}^{2}}$$

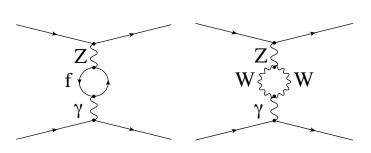
$$\times \left(\frac{2ME}{W^{2} - M^{2} + Q^{2}} - \frac{1}{2} \right) F_{3}^{\gamma Z}$$

with
$$v_e(Q^2) = 1 - 4\kappa(Q^2)\sin^2\theta_W(Q^2)$$

Gorchtein, Horowitz PRL **102** (2009) 091806

 \rightarrow scale dependence of v_e, α given by vacuum polarization corrections, e.g.

$$\frac{\alpha}{\alpha(Q^2)} = 1 - \Delta\alpha_{\text{lep}}(Q^2) - \Delta\alpha_{\text{had}}^{(5)}(Q^2)$$



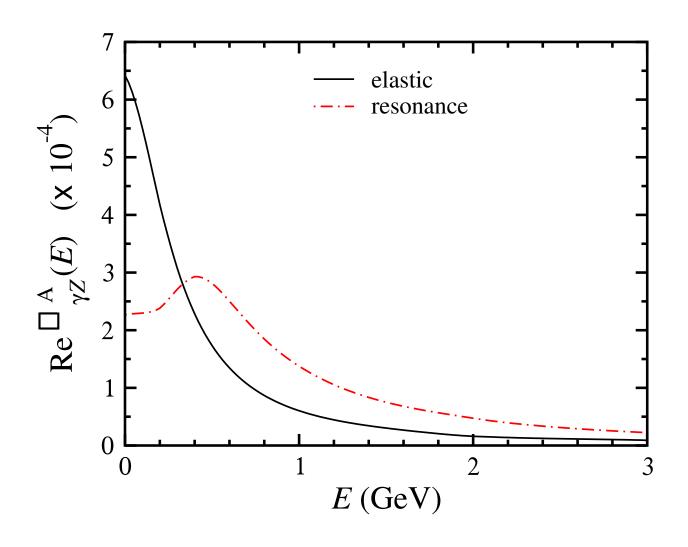
Jegerlehner, arXiv:1107.4683 [hep-ph]

$$\alpha^{-1}(M_Z^2) = 128.94$$

... similarly for weak charges

- ightharpoonup elastic part $F_3^{\gamma Z(\mathrm{el})} = -Q^2\,G_M^p(Q^2)\,G_A^Z(Q^2)\,\delta(W^2-M^2)$
- \bigstar resonance part from parametrization of ν scattering data

Lalakulich, Paschos PRD **74**, 014009 (2006)



Blunden, WM, Thomas PRL **107**, 081801 (2011)

 \triangle DIS part dominated by leading twist PDFs at high W (small x)

e.g. at LO,
$$F_3^{\gamma Z({
m DIS})} = \sum_q 2e_q \, g_A^q \, \left(q(x,Q^2) - \bar{q}(x,Q^2) \right)$$

 \longrightarrow expand integrand in $1/Q^2$ in DIS region $(Q^2 \gtrsim 1 \text{ GeV}^2)$

$$\mathcal{R}e \ \Box_{\gamma Z}^{\text{A(DIS)}}(E) = \frac{3}{2\pi} \int_{Q_0^2}^{\infty} dQ^2 \, \frac{v_e(Q^2) \, \alpha(Q^2)}{1 + Q^2 / M_Z^2} \times \left[M_3^{\gamma Z(1)} - \frac{2M^2}{9Q^4} (5E^2 - 3Q^2) M_3^{\gamma Z(3)} \right]$$

moments
$$M_3^{\gamma Z(n)}(Q^2) = \int_0^1 dx \, x^{n-1} F_3^{\gamma Z}(x, Q^2)$$

Structure function moments

$$\underline{n=1}$$
 $M_3^{\gamma Z(1)}(Q^2) = \frac{5}{3} \left(1 - \frac{\alpha_s(Q^2)}{\pi}\right)$

 $\rightarrow \gamma Z$ analog of Gross-Llewellyn Smith sum rule

$$\mathcal{R}e \ \Box_{\gamma Z}^{A(\text{DIS})} \approx (1 - 4\hat{s}^2) \frac{5\alpha}{2\pi} \int_{Q_0^2}^{\infty} \frac{dQ^2}{Q^2(1 + Q^2/M_Z^2)} \left(1 - \frac{\alpha_s(Q^2)}{\pi}\right)$$

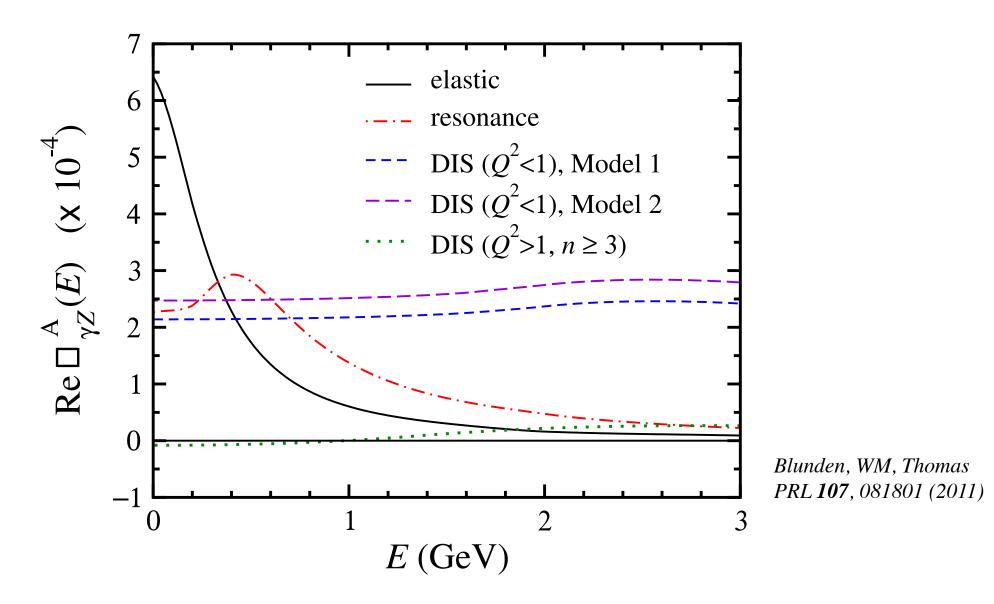
precisely result from Marciano & Sirlin! (works because result depends on lowest moment of valence PDF, with model-independent normalization!)

$$\underline{n=3} \quad M_3^{\gamma Z(3)}(Q^2) = \frac{1}{3} \left(2\langle x^2 \rangle_u + \langle x^2 \rangle_d \right) \left(1 + \frac{5\alpha_s(Q^2)}{12\pi} \right)$$

 \rightarrow related to x^2 -weighted moment of valence PDFs

- \bigstar "DIS" region at $Q^2 < 1 \text{ GeV}^2$ does not afford PDF description
 - → in absence of data, consider models with general constraints
 - \bigstar $F_3^{\gamma Z}(x_{\mathrm{max}},Q^2)$ should not diverge in limit $Q^2 \to 0$
 - \bigstar $F_3^{\gamma Z}(x,Q^2)$ should match PDF description at $Q^2=1\,{
 m GeV^2}$

Model 2
$$F_3^{\gamma Z}$$
 frozen at $Q^2=1$ value for all W^2
$$F_3^{\gamma Z} \text{ finite as } Q^2 \to 0$$



dominated by n = 1 DIS moment: 32.8×10^{-4} (weak E dependence)

 \blacksquare correction at E = 0

$$\Re e \,\square_{\gamma Z}^{A} \ = \ 0.00064 \ + \ 0.00023 \ + \ 0.00350 \ \rightarrow \ \underline{0.0044(4)}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$elastic \qquad resonance \qquad DIS$$

 \blacksquare correction at E = 1.165 GeV (Qweak)

$$\Re e \,\Box_{\gamma Z}^{A} = 0.00005 + 0.00011 + 0.00352 = \underline{0.0037(4)}$$

cf.
$$MS^*$$
 value: $0.0052(5)$ (~1% shift in Q_W^p)

* *Marciano*, *Sirlin*, *PRD* **29**, 75 (1984)

■ shifts Q_W^p from $0.0713(8) \rightarrow 0.0705(8)$

Vector h correction

- <u>Vector</u> h correction $\Box_{\gamma Z}^{V}$ vanishes at E=0, but experiment has $E\sim 1~{\rm GeV}$ what is energy dependence?
 - → forward dispersion relation

$$\Re e \ \Box_{\gamma Z}^{V}(E) = \frac{2E}{\pi} \int_{0}^{\infty} dE' \frac{1}{E'^2 - E^2} \ \Im m \ \Box_{\gamma Z}^{V}(E')$$

- integration over E' < 0 corresponds to crossed-box, vector h contribution symmetric under $E' \longleftrightarrow -E'$
- → imaginary part given by

$$\Im m \,\Box_{\gamma Z}^{V}(E) = \frac{\alpha}{(s - M^{2})^{2}} \int_{W_{\pi}^{2}}^{s} dW^{2} \int_{0}^{Q_{\max}^{2}} \frac{dQ^{2}}{1 + Q^{2}/M_{Z}^{2}} \times \left(F_{1}^{\gamma Z} + F_{2}^{\gamma Z} \frac{s (Q_{\max}^{2} - Q^{2})}{Q^{2}(W^{2} - M^{2} + Q^{2})}\right)$$

Gorchtein, Horowitz, PRL 102, 091806 (2009)

Vector h correction

- lacksquare $F_{1,2}^{\gamma Z}$ structure functions
 - ★ parton model for DIS region

$$F_2^{\gamma Z} = 2x \sum_q e_q g_V^q (q + \bar{q}) = 2x F_1^{\gamma Z}$$

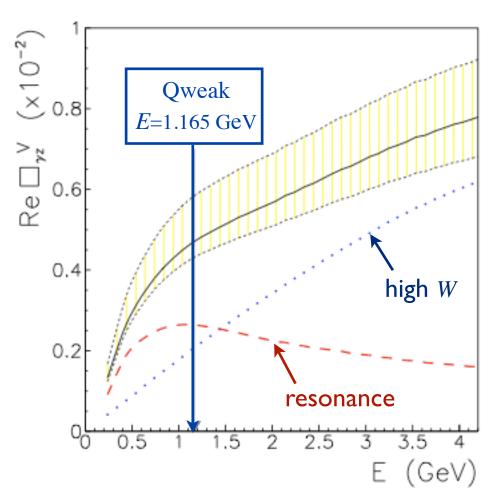
- in <u>resonance</u> region use phenomenological input for F_2 (e.g. Christy-Bosted), empirical (SLAC) fit for R
 - \rightarrow for transitions to $\underline{I=3/2}$ states (e.g. Δ), CVC and isospin symmetry give $F_i^{\gamma Z}=(1+Q_W^p)F_i^{\gamma}$
 - \rightarrow for transitions to $\underline{I=1/2}$ states, $\gamma\gamma\to\gamma Z$ rotations fixed by CVC and p,n helicity amplitudes

Vector h correction

lacksquare Total $\Box^V_{\gamma Z}$ correction

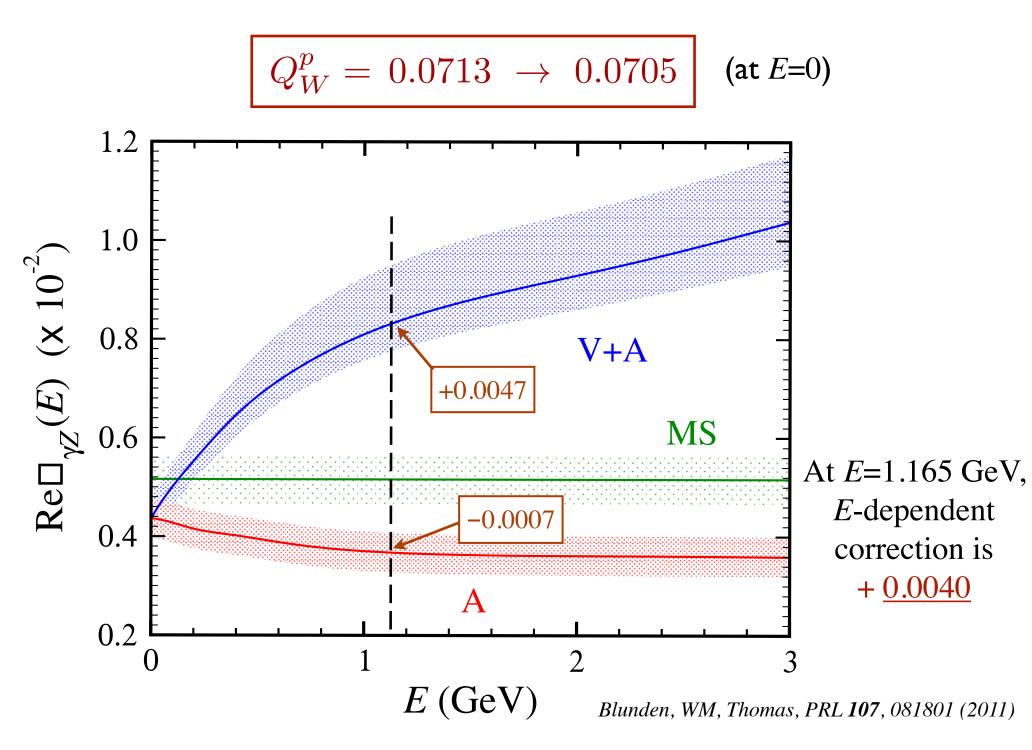
$$\Re e \,\Box_{\gamma Z}^{V} = 0.0047^{+0.0011}_{-0.0004}$$

or $6.6^{+1.5}_{-0.6}\,\%$ of uncorrected Q_W^p



Sibirtsev, Blunden, WM, Thomas PRD **82**, 013011 (2010)

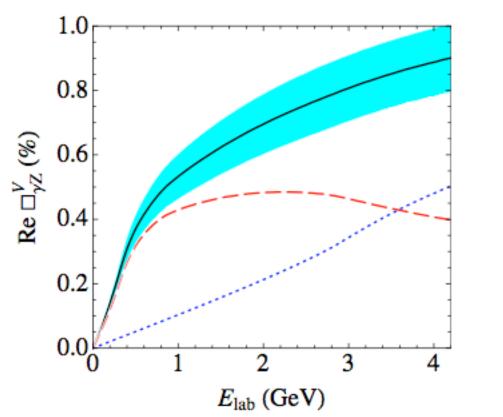
Combined vector and axial h correction



Other calculations

Rislow & Carlson

$$\Re e \; \Box_{\gamma Z}^{V} = 0.0057 \pm 0.0009$$



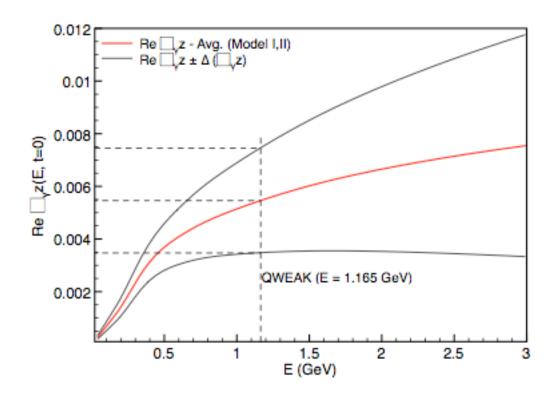
Rislow, Carlson PRD 83, 113007 (2011)

→ compatible with SBMT within errors

Other calculations

Gorchtein, Horowitz & Ramsey-Musolf

$$\Re e \ \Box_{\gamma Z}^{V} = 0.0054 \pm 0.0020$$



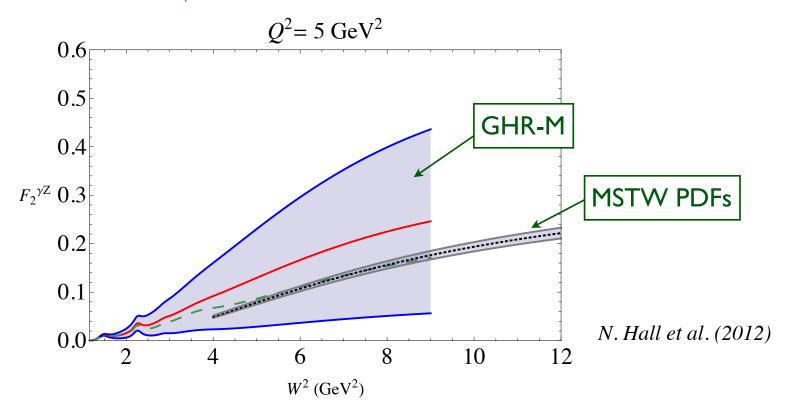
Gorchtein, Horowitz, Ramsey-Musolf PRC 84, 015502 (2011)

central value consistent with SBMT and RC, but 2 x larger uncertainty

Other calculations

Gorchtein, Horowitz & Ramsey-Musolf

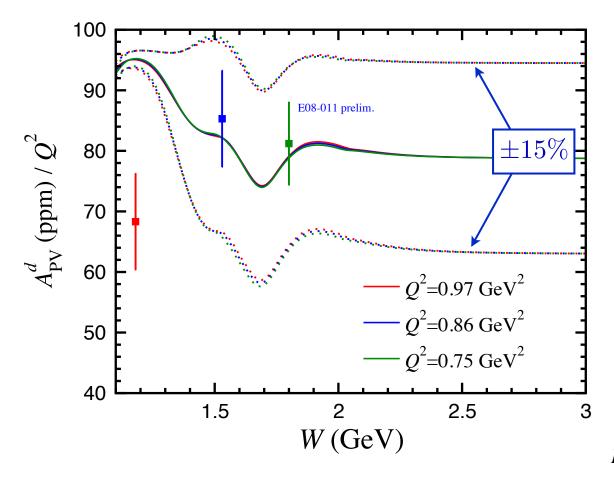
$$\Re e \ \Box_{\gamma Z}^{V} = 0.0054 \pm 0.0020$$



large uncertainty on non-resonant background
 significantly larger than expected from PDFs

Constraints from PVDIS asymmetries (E08-011 on deuterium)

$$A_{\rm PV} \propto \frac{xy^2 F_1^{\gamma Z} + (1-y) F_2^{\gamma Z} + \frac{g_V^e}{g_A^e} (y-y^2/2) F_3^{\gamma Z}}{xy^2 F_1^{\gamma \gamma} + (1-y) F_2^{\gamma \gamma}}$$

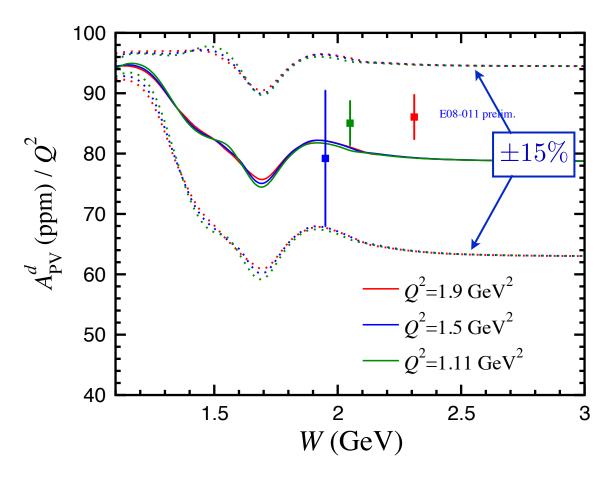


$$F_i^{\gamma Z} = \left(\frac{F_i^{\gamma Z}}{F_i^{\gamma \gamma}}\right)^{\text{LT}} F_i^{\gamma \gamma}$$

Hall, Blunden, WM et al. (2012)

Constraints from PVDIS asymmetries (E08-011 on deuterium)

$$A_{\rm PV} \propto \frac{xy^2 F_1^{\gamma Z} + (1-y) F_2^{\gamma Z} + \frac{g_V^e}{g_A^e} (y-y^2/2) F_3^{\gamma Z}}{xy^2 F_1^{\gamma \gamma} + (1-y) F_2^{\gamma \gamma}}$$

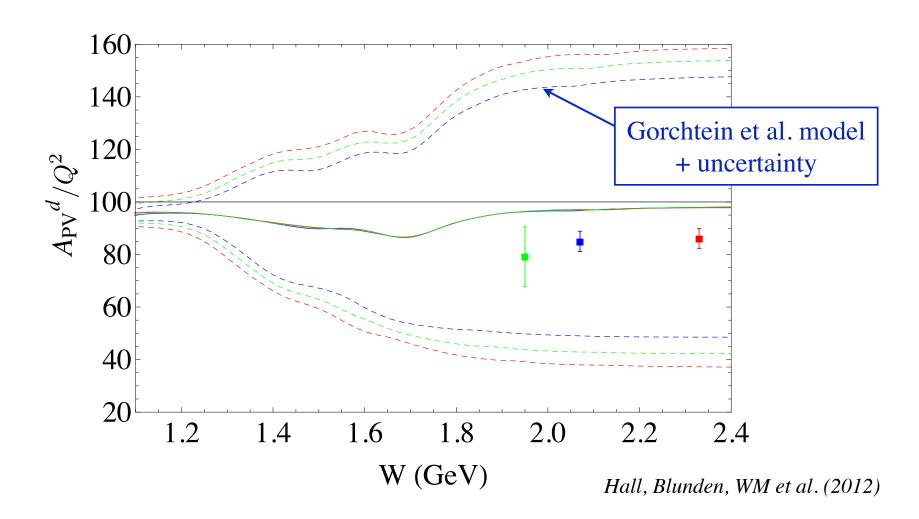


$$F_i^{\gamma Z} = \left(\frac{F_i^{\gamma Z}}{F_i^{\gamma \gamma}}\right)^{\text{LT}} F_i^{\gamma \gamma}$$

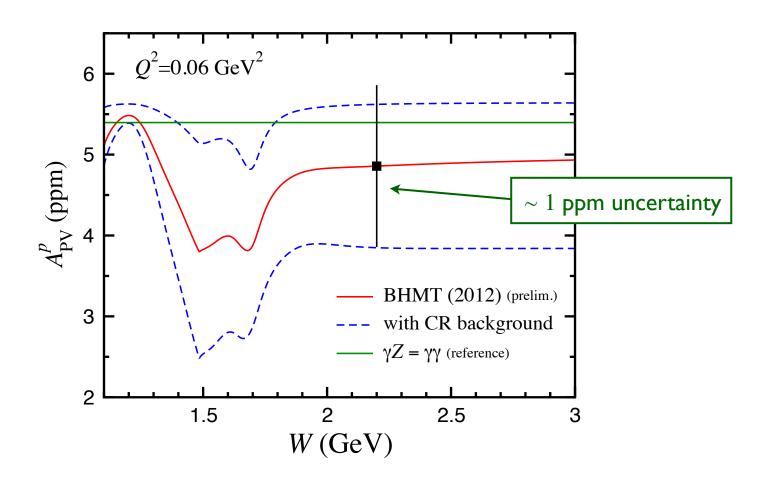
Hall, Blunden, WM et al. (2012)

Constraints from PVDIS asymmetries (E08-011 on deuterium)

$$A_{\rm PV} \propto \frac{xy^2F_1^{\gamma Z} + (1-y)F_2^{\gamma Z} + \frac{g_V^e}{g_A^e}(y-y^2/2)F_3^{\gamma Z}}{xy^2F_1^{\gamma \gamma} + (1-y)F_2^{\gamma \gamma}}$$



Expected inelastic asymmetry data from Qweak



 \rightarrow constrain input $F_i^{\gamma Z}$ structure functions for $\mathcal{R}e \square_{\gamma Z}$ (updated analysis in progress) $_{Hall,\;Blunden,\;WM\;et\;al.\;(2012)}$

APV in ¹³³Cs

- Parity violating dipole transition $6S_{1/2} 7S_{1/2}$ sensitive to weak mixing angle $(E \sim 0)$
 - → weak charge of Cs

$$Q_W(\mathrm{Cs}) = 55\,\widetilde{Q}_W^p + 78\,\widetilde{Q}_W^n$$
 weak charge of $bound\ p$ in Cs nucleus

- Nuclear effect on elastic N contribution Pauli blocking
 - \rightarrow intermediate state N (in target rest frame) must have momentum above Fermi level

$$|\mathbf{q}| > p_F \approx 260 \,\mathrm{MeV}$$

$$\Rightarrow Q^2 > Q_{\min}^2 = 2M^2 \left(\sqrt{1 + p_F^2/M^2 - 1} \right) \approx p_F^2$$

APV in ¹³³Cs

Significantly reduced elastic contribution

$$\Box_{\gamma Z}^{p \, (\mathrm{el})} : 0.00064 \rightarrow 0.00029, \qquad \Box_{\gamma Z}^{n \, (\mathrm{el})} : 0.00044 \rightarrow 0.00020$$

■ Total γZ corrections dominated by DIS contributions

	p	n
total	0.0040(4)	0.0032(4)
MS	0.0052(5)	0.0040(4)
$\Delta \widetilde{Q}_W^N$	-0.0012	-0.0008
$\Delta Q_W(\mathrm{Cs})$	-0.065	-0.060

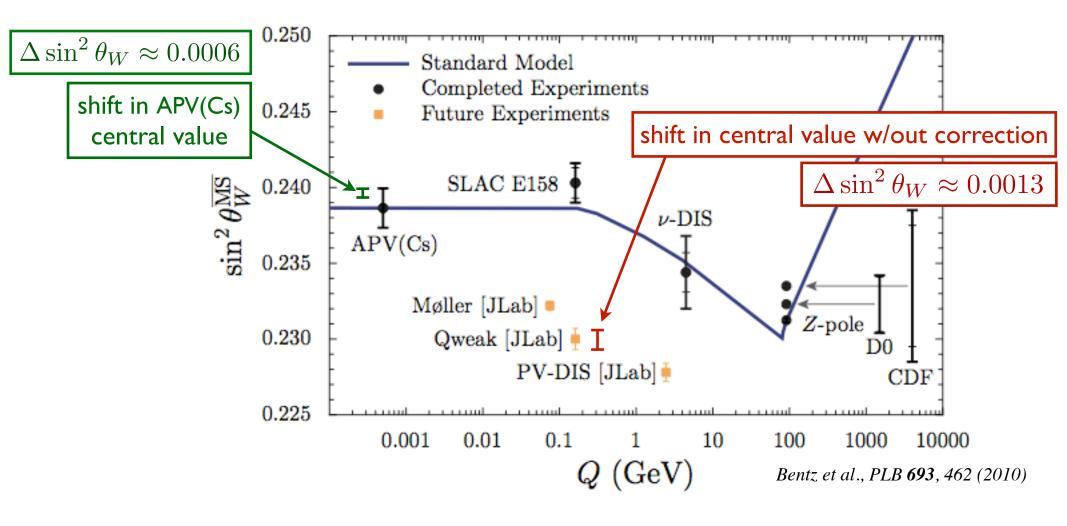
→ overall shift in weak charge (relative to MS)

$$\Delta Q_W(\mathrm{Cs}) = -0.126$$

or
$$-0.16\%$$
 of $Q_W^{exp}(Cs) = -73.20(35)$

Blunden, WM, Thomas arXiv:1208.4310

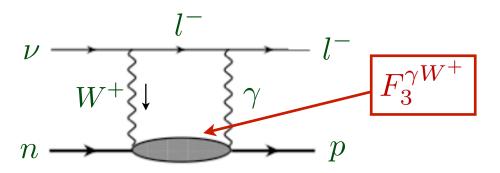
Effect on weak mixing angle



- \rightarrow Qweak: large shift in central value cf. MS
- APV(Cs): shift in central value cf. MS by ~ 1/3 of error bar (~ 4 x larger than quoted SM uncertainty)

Further application: TBE in neutrino scattering

 May expect similar two-boson exchange (TBE) effects in neutrino scattering (QE, DIS)



Relevant for n beta decay, extraction of CKM matrix element V_{ud}

$$F(Q^2) \xrightarrow{\text{high } Q^2} \frac{1}{Q^2} \left(1 - \frac{\alpha_s(Q^2)}{\pi} \right)$$

as in Bjorken & GLS sum rules

$$\underset{\text{low } Q^2}{\longrightarrow} \sum_{V=\rho,A,\rho'} \frac{a_V}{Q^2 + m_V^2}$$

vector meson dominance

Summary

- \blacksquare γZ box corrections computed via dispersion relations from inclusive γZ interference structure functions
 - new formulation in terms of moments puts on firm footing earlier estimates within "free quark model"
- Significant energy dependent vector hadron correction
 - → for Qweak kinematics, shifts central value of weak charge

$$Q_W^p = 0.0713 \rightarrow 0.0705$$

- → significant constraints from new PVDIS asymmetry data
- \blacksquare γZ corrections to APV in 133 Cs
 - \rightarrow shift relative to MS value for $Q_W(Cs)$ of -0.16%

$$\Delta \sin^2 \theta_W \approx 4$$
 x SM uncertainty