

Orbital Angular Momentum in QCD, Institute for Nuclear Theory Feb. 7, 2012

## Large-x structure functions and OAM

Wally Melnitchouk



## Outline

- Why large-x quarks are important
  - $\rightarrow$  valence quarks, relation with high-t form factors
- $x \rightarrow 1$  behavior from perturbative QCD →  $L_z = 0$  analysis; suppression of helicity-flip
- Role of OAM
  - → log enhancement of helicity-flip amplitudes
- Phenomenological implications
  - $\rightarrow$  CJ (CTEQ-JLab) large-x global analysis
  - $\rightarrow$  challenges for empirical  $x \rightarrow 1$  analysis

# Why large *x*?

- Most direct connection between quark distributions and models of nucleon structure (e.g. leading Fock state of wfn) is via valence quarks
  - $\rightarrow$  most cleanly revealed at x > 0.4



The local testing ground for nonperturbative & perturbative  $\tau = d - n$ models of the nucleon d = n

 $d = \frac{d}{d} = \frac{d}{d}$  ratio of d to u PDFs sensitive to spin-flavor dynamics



- Ideal testing ground for nonperturbative & perturbative models of the nucleon
  - $\rightarrow$  e.g. ratio of d to u PDFs sensitive to spin-flavor dynamics
    - $d/u \rightarrow 1/2$  SU(6) symmetry
    - $d/u \rightarrow 0$  S = 0 qq dominance
    - $d/u \rightarrow 1/5$   $S_z = 0$  qq dominance

• 
$$d/u \to \frac{4\,\mu_n^2/\mu_p^2 - 1}{4 - \mu_n^2/\mu_p^2}$$

see e.g. WM, Ent, Keppel Phys. Rep. **406**, 127 (2005) local quark-hadron duality\* ( $\mu_{p,n}$  magnetic moments)

\* structure function at  $x \rightarrow 1$  given by elastic form factor at  $Q^2 \rightarrow \infty$ 

- Ideal testing ground for nonperturbative & perturbative models of the nucleon
  - $\rightarrow$  e.g. ratio  $\Delta q/q$  even more sensitive
    - $\Delta u/u \rightarrow 2/3$  SU(6) symmetry  $\Delta d/d \rightarrow -1/3$
    - $\Delta u/u \to 1$  $\Delta d/d \to -1/3$
- S = 0 qq dominance

•  $\Delta u/u \to 1$  $\Delta d/d \to 1$ 

 $S_z = 0$  qq dominance <u>or</u> local duality

## Inclusive-exclusive connection

Drell-Yan-West relation

$$G_M(Q^2) \sim \left(\frac{1}{Q^2}\right)^n \iff F_2(x) \sim (1-x)^{2n-1}$$

- Drell & Yan: field-theoretical model of strongly interacting  $N, \overline{N} \& \pi$  "partons" in infinite momentum frame
- West:  $_{PRL 24, 1206 (1970)}$  covariant model with single *scalar* quark, assuming amplitude for proton  $\rightarrow$  quark + spectator behaves as  $f(p_i^2, p_{spec}^2) \sim \left(\frac{1}{p_i^2}\right)^n g(p_{spec}^2), \quad p_i^2 \rightarrow \infty$ 
  - → for several flavors, in general  $\sum_{i} e_i^2 \neq \left(\sum_{i} e_i\right)^2$ → how does duality arise?

Close, Isgur, PLB 509, 81 (2001)

■ In QCD, "exceptional"  $x \rightarrow 1$  configurations of proton wave function generated from "typical" wave function (for which  $x_i \sim 1/3$ ) by exchange of  $\geq 2$  hard gluons, with mass  $k^2 \sim -\langle k_{\perp}^2 \rangle/(1-x)$ 



Farrar, Jackson, PRL 35, 1416 (1975)

- Since |k<sup>2</sup>| is large, coupling at q-g vertex is small
   → use lowest-order perturbation theory!
- Assume wave function vanishes sufficiently fast as  $|k^2| \rightarrow \infty$ <u>and unperturbed</u> wave function dominated by 3-quark Fock component with  $SU(2) \times SU(3)$  symmetry

- If spectator "diquark" spins are anti-aligned (helicity of struck quark = helicity of proton)
  - → can exchange <u>transverse</u> <u>or longitudinal</u> gluon



- If spectator "diquark" spins are aligned (helicity of struck quark ≠ helicity of proton)
  - $\rightarrow$  can exchange *only* <u>longitudinal</u> gluon
- Coupling of (large- $k^2$ ) longitudinal gluon to (small- $p^2$ ) quark is suppressed by  $(p^2/k^2)^{1/2} \sim (1-x)^{1/2}$  w.r.t. transverse

$$\rightarrow q^{\downarrow} \sim (1-x)^2 q^{\uparrow} \sim (1-x)^5$$

- Phenomenological consequences of  $S_z = 0$  qq dominance\*
  - $\rightarrow$  assuming unperturbed SU(6) wave function,

 $F_2^n/F_2^p \rightarrow 3/7$ 

 $\rightarrow$  dominance of helicity-1/2 photoproduction cross section

 $\sigma_{1/2} \gg \sigma_{3/2}$ 

 $\rightarrow$  for all quark flavors q,  $\Delta q/q \rightarrow 1$ 

and therefore all polarization asymmetries  $A_1 
ightarrow 1$ 

 $\rightarrow$  for pion, expect

$$F_2^{\pi} \sim (1-x)^2$$

\* valid in Abelian & non-Abelian theories

Role of orbital angular momentum

- Above results assume quarks in lowest Fock state are in relative *s*-wave
  - → higher Fock states and nonzero quark OAM will in general introduce additional suppression in (1-x)
- BUT nonzero OAM can provide logarithmic enhancement of *helicity-flip* amplitudes!
  - → quark OAM modifies asymptotic behavior of nucleon's Pauli form factor

$$F_2(Q^2) \sim \log^2(Q^2/\Lambda^2) \frac{1}{Q^6}$$

Belitsky, Ji, Yuan PRL **91**, 092003 (2003)

 $\rightarrow$  consistent with surprising  $Q^2$  dependence of proton's  $G_E/G_M$  form factor ratio

## Role of orbital angular momentum

- For  $L_z = 1$  Fock state, expand hard scattering amplitude in powers of  $k_{\perp}$  ("collinear expansion")
  - $\rightarrow$  logarithmic singularities arise when integrating over longitudinal momentum fractions  $x_i$  of soft quarks



→ leads to additional  $\log^2(1-x)$  enhancement of  $q^{\downarrow}$  $q^{\downarrow} \sim (1-x)^5 \log^2(1-x)$ 

Avakian, Brodsky, Deur, Yuan, PRL 99, 082001 (2007)

(similar contributions to positive helicity  $q^{\uparrow}$  are power-suppressed)

## Role of orbital angular momentum

■  $k_{\perp}$ -odd transverse momentum dependent (TMD) distributions (vanish after  $k_{\perp}$  integration)

 $\rightarrow$  arise from *interference* between  $L_z = 0$  and  $L_z = 1$  states

#### ■ *T*-<u>even</u> TMDs

 $\rightarrow$   $g_{1T}$  (longitudinally polarized q in a transversely polarized N)  $h_{1L}$  (transversely polarized q in a longitudinally polarized N)

#### ■ *T*-<u>odd</u> TMDs

→  $f_{1T}^{\perp}$  (unpolarized q in a transversely polarized N – "Sivers")  $h_1^{\perp}$  (transversely polarized q in an unpolarized N – "Boer-Mulders")

• Each behaves in  $x \rightarrow 1$  limit as TMD  $\sim (1 - x)^4$ 

Brodsky, Yuan PRD **74**, 094018 (2006)

Power counting rule constraints used in exploratory fit to limited set of inclusive DIS spin structure function data

$$q^{\uparrow} = x^{\alpha} \left[ A(1-x)^3 + B(1-x)^4 \right]$$

 $q^{\downarrow} = x^{\alpha} [C(1-x)^5 + D(1-x)^6]$ 

Brodsky, Burkardt, Schmidt NPB 441, 197 (1995)

Power counting rule constraints used in exploratory fit to limited set of inclusive DIS spin structure function data



• Determining  $x \rightarrow 1$  behavior experimentally is problematic

→ simple  $x^{\alpha}(1-x)^{\beta}$  parametrizations inadequate for describing *high-precision* data, and global fits typically require more complicated x dependence, *e.g.* 

$$q \sim x^{\alpha}(1-x)^{\beta} \left(1+\gamma\sqrt{x}+\eta x\right)$$

 $\rightarrow$  recent global fits of spin-dependent PDFs find (at  $Q^2 \sim 5 \text{ GeV}^2$ )

 $\beta \approx 3.3 \ (\Delta u_V), \ 3.9 \ (\Delta d_V)$  de Florian et al. PRD 80, 034030 (2009)

but with  $\gamma, \eta \sim \mathcal{O}(10\text{--}100)$ 

Challenge to perform constrained *global* fit to all DIS, SIDIS &  $\vec{p} \, \vec{p}$  scattering data

• Determining  $x \rightarrow 1$  behavior experimentally is problematic

→ simple  $x^{\alpha}(1-x)^{\beta}$  parametrizations inadequate for describing *high-precision* data, and global fits typically require more complicated x dependence, *e.g.* 

$$q \sim x^{\alpha}(1-x)^{\beta} \left(1+\gamma\sqrt{x}+\eta x\right)$$

 $\rightarrow$  recent global fits of spin-dependent PDFs find (at  $Q^2 \sim 5 \text{ GeV}^2$ )

 $\beta \approx 3.3 \ (\Delta u_V), \ 4.1 \ (\Delta d_V)$  Leader, Sidorov, Stamenov PRD 82, 114018 (2010)

but with  $\gamma, \eta \sim \mathcal{O}(10\text{--}100)$ 

Challenge to perform constrained *global* fit to all DIS, SIDIS &  $\vec{p} \, \vec{p}$  scattering data

• Determining  $x \rightarrow 1$  behavior experimentally is problematic

→ simple  $x^{\alpha}(1-x)^{\beta}$  parametrizations inadequate for describing *high-precision* data, and global fits typically require more complicated x dependence, *e.g.* 

$$q \sim x^{\alpha}(1-x)^{\beta} \left(1+\gamma\sqrt{x}+\eta x\right)$$

 $\rightarrow$  recent global fits of spin-dependent PDFs find (at  $Q^2 \sim 5 \text{ GeV}^2$ )

 $\beta \approx 3.0 \ (\Delta u_V), \ 4.1 \ (\Delta d_V)$  Bluemlein, Boettcher NPB 841, 205 (2010)

but with  $\gamma, \eta \sim \mathcal{O}(10\text{--}100)$ 

Challenge to perform constrained *global* fit to all DIS, SIDIS &  $\vec{p} \, \vec{p}$  scattering data

- Challenges for large-x PDF analysis
  - $\rightarrow$  at fixed  $Q^2$ , increasing x corresponds to decreasing W
    - eventually run into nucleon *resonance* region as  $x \rightarrow 1$
    - impose cuts (usual solution) or utilize quark-hadron duality (theoretical bias)
  - $\rightarrow$  subleading  $1/Q^2$  corrections (target mass, higher twists)
  - → nuclear corrections in extraction of *neutron* information from nuclear (deuterium,<sup>3</sup>He) data
  - $\rightarrow$  dependence on choice of PDF parametrization
- New CTEQ-JLab ("CJ") global PDF analysis\* (unpolarized) dedicated to describing large-x region

\* CJ collaboration: A. Accardi, J. Owens, WM (theory) + E. Christy, C. Keppel, P. Monaghan, L. Zhu (expt.)



cut0: 
$$Q^2 > 4 \text{ GeV}^2$$
,  $W^2 > 12.25 \text{ GeV}^2$   
cut1:  $Q^2 > 3 \text{ GeV}^2$ ,  $W^2 > 8 \text{ GeV}^2$   
cut2:  $Q^2 > 2 \text{ GeV}^2$ ,  $W^2 > 4 \text{ GeV}^2$   
cut3:  $Q^2 > m_c^2$ ,  $W^2 > 3 \text{ GeV}^2$   
factor 2 increase  
in DIS data from  
cut0  $\rightarrow$  cut3

- Systematically reduce  $Q^2 \& W$  cuts
- Fit includes TMCs, HT term, nuclear corrections





Accardi et al. PRD 81, 034016 (2010)

→ larger database with weaker cuts leads to significantly *reduced errors*, esp. at large x



 $\rightarrow$  large nuclear correction uncertainties at x > 0.5

 $\rightarrow x \rightarrow 1$  limiting value depends on deuteron model



(allows for finite, nonzero d/u in x = 1 limit)

## Outlook

- Nuclear correction uncertainties expected to be resolved with new experiments at JLab-12 GeV uniquely sensitive to *d* quarks (up to  $x \sim 0.85$ )
  - $\longrightarrow$  "spectator" protons tagged in SIDIS from deuterium  $e \ d \to e \ p_{\rm spec} \ X$  ("BoNuS")
  - → DIS from<sup>3</sup>He-tritium mirror nuclei  $e^{3}$ He(<sup>3</sup>H) →  $e^{3}X$  ("MARATHON")
  - $\rightarrow \text{PVDIS from protons} \\ \vec{e}_L(\vec{e}_R) \ p \rightarrow e \ X \quad \text{("SOLID")}$
- Constraints from W production in pp collisions at high (lepton & W boson) rapidities
  - $\rightarrow$  CDF & D0 at Fermilab, LHCb at CERN

#### W boson asymmetries

Large-x PDF uncertainties affect observables at large rapidity y, with

$$y = \frac{1}{2} \ln \left( \frac{E + p_z}{E - p_z} \right) \longrightarrow \qquad x_{1,2} = \frac{M}{\sqrt{s}} e^{\pm y}$$

e.g. 
$$W^{\pm}$$
 asymmetry



## Outlook

- New JLab-12 GeV precisions measurements of  $A_1^n \& A_1^p$ hope to constrain  $\Delta d/d$  up to  $x \sim 0.8$ 
  - → new (non-inclusive DIS) experiments to reduce nuclear dependence
- Parametrization dependence of x→1 limit may be eliminated through e.g. "neural network" PDFs
   → thus far applied mainly to unpolarized PDFs
- New global analysis of *spin-dependent* PDFs dedicated to large-x, moderate-Q<sup>2</sup> region
  - $\rightarrow$  JLab Angular Momentum ("JAM") collaboration\*
  - $\rightarrow$  initial focus on helicity PDFs; later expand scope to TMDs

<sup>\*</sup> JAM collaboration: P. Jimenez-Delgado, A. Accardi, WM (theory) + JLab Halls A, B, C (expt.)

## Outlook

#### ■ Large-*x* PDFs from lattice?

 $\rightarrow$  need many moments to reconstruct x dependence



#### Need new ideas

→ e.g. compute Compton scattering tensor <u>directly</u> by coupling to fictitious heavy quark (remove all-to-all propagators, and operator mixing)

Detmold, Lin PRD 73, 014501 (2006)

## The End