OF AND

Hadrons in the Nuclear Medium ECT*, Trento, May 14, 2012

Nuclear modification of nucleon structure functions

Wally Melnitchouk

Outline

- Nuclear (→ deuteron) structure functions
 - → smearing functions & quasielastic scattering
 - \rightarrow nucleon off-shell effects
 - \rightarrow nuclear effects on neutron structure function
- Extraction of neutron resonance structure from nuclear data
 - → new "unsmearing" method
 - \rightarrow quark-hadron duality
 - \rightarrow constraints on off-shell effects from local duality, SRCs

Outlook

Nuclear structure functions

Nuclear structure functions

■ Incoherent scattering from nucleons in nucleus A $(x \gg 0)$

$$W^{A}_{\mu\nu}(P,q) = \int d^{4}p \operatorname{Tr}\left[\widehat{\mathcal{A}}(P,p) \cdot \widehat{W}^{N}_{\mu\nu}(p,q)\right]$$

→ truncated (off-shell) nucleon tensor

$$\widehat{W}^{N}_{\mu\nu}(p,q) = g_{\mu\nu} \left(I \,\widehat{W}_{0} \,+\, \not p \,\widehat{W}_{1} \,+\, \not q \,\widehat{W}_{2} \right)$$

`bound nucleon "structure functions"

→ (off-shell) nucleon-nucleus scattering amplitude

 $\widehat{\mathcal{A}}(P,p) = I \,\mathcal{A}_S + \gamma_\alpha \,\mathcal{A}_V^\alpha$ scalar, vector amplitudes include sum
over residual A-1 nuclear states

Nuclear structure functions

(Spin-averaged) structure function of nucleus given by sum of *three* terms

$$F_2^A = \int d^4 p \, \left(\mathcal{A}_S \widehat{W}_0 + p \cdot \mathcal{A}_V \widehat{W}_1 + q \cdot \mathcal{A}_V \widehat{W}_2 \right)$$

→ cannot be written (in general) as 1-dimensional convolutions:

factorization of amplitudes \Rightarrow factorization of structure functions

Taking selective on-shell or nonrelativistic limits, one can identify convolution component plus off-shell corrections

$$F_2^A = \sum_N f_{N/A} \otimes F_2^N + \delta^{(\text{off})} F_2$$

nucleon (light-cone) momentum distribution ("smearing function")

WM, *Schreiber*, *Thomas*, *PRD* **49**, 1183 (1994)

Deuteron structure functions

For *deuteron*, nucleon momentum distribution can be computed "exactly" (relativistically or nonrelativistically), and form of off-shell corrections identified

$$F_2^d(x) = \int dy \, f_{N/d}(y,\gamma) \, F_2^N(x/y) + \delta^{(\text{off})} F_2^d(x)$$

WM, Schreiber, Thomas, PLB **335**, 11 (1994) Kulagin, Piller, Weise, PRC **50**, 1154 (1994)

with relativistic ("MST") smearing function

$$f_{N/d}(y) = \frac{M_d^2}{2M} \int \frac{d^3p}{(2\pi)^3} \frac{y}{p_0} \theta(p_0) \,\delta\left(y - \frac{p_0 + p_z}{M}\right) |\psi_d(p)|^2$$

→ at $Q^2 \to \infty$, function of light-cone momentum fraction y of d carried by N, with normalization $\int dy f_{N/d}(y) = 1$

Deuteron structure functions

Expanding in powers of p^2/M^2 and binding energy ε_d/M ("weak binding approximation"), smearing function reduces to

$$f_{N/d}(y,\gamma) = \int \frac{d^3p}{(2\pi)^3} \left(1 + \frac{\gamma p_z}{M}\right) \mathcal{C}(y,\gamma) |\psi_d(p)|^2 \,\delta\left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right)$$

Kulagin, Petti, NPA 765, 126 (2006)

→ at finite Q^2 , additional dependence on photon "velocity" $\gamma = |\mathbf{q}|/q_0 = \sqrt{1 + 4M^2 x^2/Q^2}$

 $\rightarrow \text{ finite-}Q^2 \text{ correction factor} \\ \mathcal{C}(y,\gamma) = \frac{1}{\gamma^2} \Big[1 + \frac{(\gamma^2 - 1)}{y^2} \Big(1 + \frac{2\varepsilon}{M} + \frac{3p_{\perp}^2 - 2\mathbf{p}^2}{2M^2} \Big) \Big] \\ \rightarrow 1 \quad \text{for } \gamma \rightarrow 1 \qquad \text{ separation energy } \varepsilon = p_0 - M \\ \approx \varepsilon_d - \mathbf{p}^2/2M$

 \rightarrow for most kinematics $\gamma \lesssim 2$

 \rightarrow effectively more smearing for larger x or lower Q^2

- Can we measure / constrain smearing function (and its Q^2 dependence) in other reactions?
 - → quasielastic electron-deuteron scattering (in IA) directly probes nucleon distribution function (multiplied by nucleon form factor)

$$F_2^{N(\text{el})}(x/y, Q^2, p^2) = \left[\frac{G_{EN}^2 + \tau G_{MN}^2}{1 + \tau}\right] y \,\delta(y - x/x_{\text{th}})$$

with $x_{\text{th}} = \left[1 - (p^2 - M^2)/Q^2\right]^{-1}, \ \tau = Q^2/4M^2$

 \rightarrow quasielastic contribution to deuteron structure function

$$F_2^{d(\text{QE})}(x,Q^2) \to \sum_N \left[\frac{G_E^{N2} + \tau G_M^{N2}}{1+\tau}\right] x f_{N/d}(x,\gamma)$$

→ most data can be described by WBA smearing function → γ dependence crucial for describing Q^2 variation

→ most data can be described by WBA smearing function → γ dependence crucial for describing Q^2 variation → wave function dependence mild, except for $x \gg 1$ tails

■ In relativistic (MST) model, two sources of off-shellness

$$\delta^{(\text{off})} F_2^d \longrightarrow \delta^{(\Psi)} F_2^d$$
$$\longrightarrow \delta^{(p^2)} F_2^d$$

negative energy components of ψ_d

off-shell N structure function

$$\Phi(p,k) = N(p^2) \frac{k^2 - m_q^2}{(k^2 - \Lambda^2)^n}$$

quark-diquark vertex functions

■ In relativistic (MST) model, two sources of off-shellness

$$\delta^{(\text{off})}F_2^d \longrightarrow \delta^{(\Psi)}F_2^d$$
 negative energy components of ψ_d
 $\longrightarrow \delta^{(p^2)}F_2^d$ off-shell N structure function

$$\begin{split} \delta^{(\Psi)} F_2^d &\sim \int dy \int dp^2 \left\{ \left[\frac{1}{2} (1 - E_p/p_0) F_2^N(x/y) \left(\frac{E_p}{M_d} \widehat{W}_1^{\text{on}} - \frac{P \cdot q}{M_d^2} \widehat{W}_2^{\text{on}} \right) (\underline{p^2 - M^2}) \right] |\psi_d(p)|^2 \right. \\ &+ \left[-2M \widehat{W}_0^{\text{on}} + 2\mathbf{p}^2 \widehat{W}_1^{\text{on}} + \left(1 - y - \frac{E_p}{M_d} \right) P \cdot q \widehat{W}_2^{\text{on}} \right] (\underline{v}_t^2 + v_s^2) \right. \\ &+ \left[M \widehat{W}_0^{\text{on}} + M^2 \widehat{W}_1^{\text{on}} + \frac{M^2}{\mathbf{p}^2} \left(1 - y - \frac{E_p}{M_d} \right) P \cdot q \widehat{W}_2^{\text{on}} \right] \frac{2|\mathbf{p}|}{\sqrt{3}M} \left(u(\underline{v}_s - \sqrt{2}v_t) + w(\underline{v}_t + \sqrt{2}v_s) \right) \right\} \end{split}$$

$$\delta^{(p^2)} F_2^d \sim \int dy \int dp^2 \left\{ \mathcal{A}_s \widehat{W}_0^{\text{off}} + \mathcal{A}_v \cdot p \widehat{W}_1^{\text{off}} + \mathcal{A}_v \cdot q \widehat{W}_2^{\text{off}} \right\} \qquad \qquad \widehat{W}_i^{\text{off}} = \widehat{W}_i - \widehat{W}_i^{\text{on}}$$
$$\mathcal{A}_{s,v} = \mathcal{A}_{s,v}(u, w, v_s, v_t)$$

■ In relativistic (MST) model, two sources of off-shellness

$$\delta^{(\text{off})}F_2^d \longrightarrow \delta^{(\Psi)}F_2^d$$
 negative energy components of ψ_d
 $\longrightarrow \delta^{(p^2)}F_2^d$ off-shell N structure function

■ In relativistic (MST) model, two sources of off-shellness

 $\delta^{(\text{off})}F_2^d \longrightarrow \delta^{(\Psi)}F_2^d$ negative energy components of ψ_d $\longrightarrow \delta^{(p^2)}F_2^d$ off-shell N structure function

- High degree of model dependence
 - → require *quark*-level description of nuclear (bound nucleon) structure → see Cloët talk
 - → in practice easier to implement off-shellness at *hadron* level through WBA approach

- In WBA model, nuclear structure function factorizes to $\mathcal{O}(\mathbf{p}^2/M^2)$ into a 2-dimensional convolution (in $y \& p^2$)
 - \longrightarrow expand off-shell structure function about $p^2 = M^2$

$$F_2^{N(\text{off})}(x, p^2) = F_2^N(x) \left(1 + \delta f(x) \frac{p^2 - M^2}{M^2}\right)$$

with coefficient function

$$\delta f(x) = \left. \frac{\partial \log F_2^{N(\text{off})}}{\partial \log p^2} \right|_{p^2 = M^2}$$

- "Phenomenological" model
 - \rightarrow assume δf is independent of nucleus, and *fit* to F_2^A/F_2^d data

$$\delta f^{\text{(fit)}} = C_N(x - 0.05)(x - x_0)(1 + x_0 - x)$$

 \rightarrow see Petti talk

Kulagin, Petti, NPA 765, 126 (2006)

• "Microscopic" model – off-shell spectral function $\Phi(k^2, \Lambda(p^2))$

 \rightarrow in valence approximation $F_2^N(x) \sim xq_v(x)$

$$\lambda = \frac{\partial \log \Lambda^2}{\partial \log p^2} \Big|_{p^2 = M^2} \longrightarrow \Lambda^{-1} \sim \text{ confinement radius } R_N$$
$$= -\frac{2 \,\delta R_N}{R_N} \frac{\delta p^2}{M^2} \longrightarrow \frac{\delta R_N / R_N}{M^2} = 1.5\% - 1.8\%_{Close et al., PRD 31, 1004 (1985)}$$
$$\sim 0.46 - 1.00 \qquad \qquad \underbrace{\frac{\delta p^2 / M^2}{M^2}}_{AV18, CD-Bonn, WJC} \approx -3.7\% \text{ to } -6.2\%_{AV18, CD-Bonn, WJC}$$

Model dependence: off-shell corrections

 \rightarrow increasing nucleon off-shell suppression at large x

Model dependence: deuteron wave function

 uncertainty in large-y tail of momentum distribution (short-range NN interaction) EMC effect in deuteron

 $\rightarrow \approx 2-4\%$ depletion at $x \sim 0.4-0.6$, depending on model

Nuclear effects on neutron structure

- Iarge effect of nuclear model uncertainty on extracted neutron structure function at high x
- -> cannot discriminate between predictions for $x \to 1$ behavior of F_2^n/F_2^p ratio

Nuclear effects on neutron structure

 \rightarrow SU(6) prediction disfavored by microscopic models

 \rightarrow to disentangle *leading twist* need global pQCD analysis

Nuclear effects on PDF analysis

- → larger off-shell effects → larger d/u ratio
- \rightarrow precise $x \rightarrow 1$ limit depends on parametrization

Nuclear effects on PDF analysis

 \rightarrow combined nuclear correction uncertainties sizable at x > 0.5

- $\rightarrow x \rightarrow 1$ limiting value depends critically on deuteron model
- \rightarrow *n/p* ratio smaller at large *x cf*. no nuclear corrections fit

Nuclear effects on resonances

Neutron resonances

- Extraction of neutron information in *resonance* region is highly problematic
 - → nuclear Fermi motion smears out resonance structures in neutrons bound in nuclei

Arrington et al., PRC 64, 014602 (2001)

Baillie et al., PRL 108, 142001 (2012)

- **Calculated** F_2^d depends on input F_2^n
 - \rightarrow extracted *n* depends on input *n* ... cyclic argument
- Solution: (additive) iteration procedure 0. subtract $\delta^{(off)}F_2^d$ from d data: $F_2^d \to F_2^d - \delta^{(off)}F_2^d$
 - 1. define difference between smeared and free SFs

$$F_2^d - \widetilde{F}_2^p = \widetilde{F}_2^n \equiv f \otimes F_2^n \equiv F_2^n + \Delta$$

- 2. first guess for $F_2^{n(0)} \longrightarrow \Delta^{(0)} = \widetilde{F}_2^{n(0)} F_2^n$
- 3. after one iteration, gives $F_2^{n(1)} = F_2^{n(0)} + (\widetilde{F}_2^n \widetilde{F}_2^{n(0)})$
- 4. repeat until convergence

 F_2^d constructed from known F_2^p and F_2^n inputs (using MAID resonance parameterization)

can reconstruct almost arbitrary shape

 F_2^d constructed from known F_2^p and F_2^n inputs (using MAID resonance parameterization)

 \rightarrow vital to use correct (Q^2 -dependent) smearing function

striking similarity with QCD fit to DIS data!

Neutron resonances – duality

"theory" is QCD fit
 to W > 2 GeV data
 Alekhin et al., 0908.2762 [hep-ph]

- *locally*, deviations in individual resonance regions < 15-20%</p>
- *globally*, deviations generally < 10%

Malace, Kahn, WM, Keppel PRL **104**, 102001 (2010)

→ duality is <u>not</u> accidental, but a general feature of resonance-scaling transition!

Neutron resonances – duality

Accidental cancellations of charges?

proton HT ~ 1 -
$$\left(2 \times \frac{4}{9} + \frac{1}{9}\right) = 0$$
!
neutron HT ~ 0 - $\left(\frac{4}{9} + 2 \times \frac{1}{9}\right) \neq 0$

- → duality in proton a *coincidence*!
- \rightarrow should <u>*not*</u> hold for neutron

Brodsky, hep-ph/0006310

Neutron resonances – duality

- *locally*, deviations in individual resonance regions < 15-20%</p>
- *globally*, deviations generally < 10%

Malace, Kahn, WM, Keppel PRL **104**, 102001 (2010)

use resonance region data to learn about leading twist structure functions?

Neutron resonances – BoNuS

- (Almost) free neutron structure function extracted from semi-inclusive scattering from $d = p e^2 c t a t d r p e^2 a g g ing$
 - slow, backward-moving proton ensures neutron is nearly on-shell, minimizes rescattering

Neutron resonances – BoNuS

- (Almost) free neutron structure function extracted from semi-inclusive scattering from $d = p/e^2 c t d p p d^2 g g g g g$
 - slow, backward-moving proton ensures neutron is nearly on-shell, minimizes rescattering

Neutron resonances – BoNuS

- (Almost) free neutron structure function extracted from semi-inclusive scattering from $d = p/e^2 c t d p/p d^2 g g ing$
 - slow, backward-moving proton ensures neutron is nearly on-shell, minimizes rescattering

Constraints from local duality

- If validity (at ~15-20% level) of local duality holds also for extreme subthreshold region $M \le W \le M + m_{\pi}$
 - → relate $x \to 1$ behavior of structure functions with $Q^2 \to \infty$ behavior of elastic (magnetic) form factors *

$$\frac{F_2^{N*}}{F_2^N} \longleftrightarrow \frac{d(G_M^{N*})^2/dQ^2}{d(G_M^N)^2/dQ^2}$$

Bloom, Gilman, PRL **16**, 1140 (1970) WM, PRL **86**, 35 (2001)

* at finite Q^2 , corrections also from G_E^N

→ F_2^{N*} , G_M^{N*} = off-shell *N* structure function, form factor calculated in quark-meson coupling (QMC) model

Guichon, Thomas, Saito, Tsushima, ...

Constraints from local duality

- If validity (at ~15-20% level) of local duality holds also for extreme subthreshold region $M \le W \le M + m_{\pi}$
 - → relate $x \to 1$ behavior of structure functions with $Q^2 \to \infty$ behavior of elastic (magnetic) form factors

→ point-like configuration (PLC) suppression model (x > 0.6)

$$\frac{F_{2}^{N*}}{F_{2}^{N}} = 1 - \frac{2(k^{2}/2M + \epsilon_{A})}{\Delta E_{A}}$$

 most of EMC effect attributed to off-shell nucleon modification

Frankfurt, Strikman, NPB 250, 1585 (1985)

 \rightarrow sign of off-shell effect in models *opposite* at large x

Constraints from local duality

Using duality in reverse, extract elastic form factor from integral of structure function below threshold

$$(G_M^p)^2 \approx \frac{(2-\xi_0)}{\xi_0^2} \frac{(1+\tau)}{(1/\mu_p^2+\tau)} \int_{\xi_{\rm th}}^1 d\xi F_2^p(\xi)$$

- PLC model predicts in-medium suppression of G_M^p
- QMC (consistent with $(\vec{e}, e'\vec{p})$ data) implies small enhancement

WM, Tsushima, Thomas EPJA 14, 105 (2002)

disfavors models with *large* medium modifications of SFs

Constraints from x > 1

• "IMC" extraction of F_2^n/F_2^p , assuming extrapolation of EMC-SRC correlation to A=1

→ assuming validity of extrapolation, how would IMC F_2^n/F_2^p data constrain deuteron correction models?

Constraints from x > 1

• "IMC" extraction of F_2^n/F_2^p , assuming extrapolation of EMC-SRC correlation to A=1

- $\rightarrow \chi^2$ fit constrains combination of *d* wave function and off-shell nucleon parameters (nucleon swelling)
- → WJC-1 disfavored, $\delta R_N/R_N = 0.2\% 1.4\%$ (at 90% C.L.)

Future methods of determining d/u

$$\bullet \ e \ d \to e \ p_{\text{spec}} \ X^*$$
"BoNus"

semi-inclusive DIS from d \rightarrow tag "spectator" protons

 $\bullet \ e^{3}\mathrm{He}(^{3}\mathrm{H}) \to e^{3}X^{*}$ "MARATHON"

³He-tritium mirror nuclei

$$\bullet \ e \ p \to e \ \pi^{\pm} \ X^*$$

semi-inclusive DIS as flavor tag

$$\begin{array}{c} e^{+} p \rightarrow \nu(\bar{\nu}) X \\ \nu(\bar{\nu}) p \rightarrow l^{\mp} X \\ p p(\bar{p}) \rightarrow W^{\pm} X, Z^{0} X \end{array}$$
 weak cur as flavor
$$\begin{array}{c} e_{L}(\bar{e}_{R}) p \rightarrow e X^{*} \end{array}$$
 as flavor
$$\begin{array}{c} * e_{L}(\bar{e}_{R}) p \rightarrow e X^{*} \end{array}$$

rent probe

planned for JLab at 12 GeV

Future methods of determining d/u

 $\bullet \ e \ d \to e \ p_{\text{spec}} \ X^*$

"BoNuS"

semi-inclusive DIS from d \rightarrow tag "spectator" protons

•
$$e^{3} \operatorname{He}(^{3} \operatorname{H}) \to e X^{*}$$

"MARATHON"

³He-tritium mirror nuclei

Summary

- Neutron structure at large x has remained elusive for > 40 years
 impact of nuclear effects on PDF analysis (CJ collaboration)
- First (model-independent) glimpse of neutron resonance spectrum from BoNuS experiment
 - strong indication of validity of quark-hadron duality (not result of accidental cancellations)
- Model-dependent constraints give conflicting evidence for magnitude of nucleon off-shell effects (local duality → small, IMC → large)
 - → definitive tests will require JLab 12 GeV data (~ insensitive to nuclear effects)