

Workshop on Chiral Dynamics Jefferson Lab August 9, 2012

Equivalence of pion loops in equal time and light-front dynamics

Wally Melnitchouk

with Chueng Ji (NCSU), Khalida Hendricks (NCSU), Tony Thomas (Adelaide)

Background

Large flavor asymmetry in proton sea suggests important role of π cloud even in high-energy reactions

Sullivan, PRD 5, 1732 (1972) Thomas, PLB **126**, 97 (1983)

 $(\bar{d} - \bar{u})(x) = \int_x^1 \frac{dy}{y} f_\pi(y) \ \bar{q}^\pi(x/y)$

pion light-cone momentum distribution in nucleon

Chiral expansion of moments of $f_{\pi}(y)$

model-independent leading nonanalytic (LNA) behavior

$$\langle x^0 \rangle_{\bar{d}-\bar{u}} \equiv \int_0^1 dx (\bar{d}-\bar{u}) = \frac{2g_A^2}{(4\pi f_\pi)^2} m_\pi^2 \log(m_\pi^2/\mu^2)$$

Thomas, WM, Steffens, PRL 85, 2892 (2000)

Nonanalytic behavior vital for chiral extrapolation of lattice data

Direct calculation of matrix elements of local twist-2 operators in ChPT disagrees with "Sullivan" result

$$\langle x^n \rangle_{u-d} = a_n \left(1 + \frac{(3g_A^2 + 1)}{(4\pi f_\pi)^2} m_\pi^2 \log(m_\pi^2/\mu^2) \right) + \mathcal{O}(m_\pi^2)$$

Chen, X. Ji, PLB **523**, 107 (2001) *Arndt, Savage, NPA* **692**, 429 (2002)

- → is there a problem with application of ChPT or "Sullivan process" to DIS?
- → is light-front treatment of pion loops (zero modes) problematic?
- → investigate relation between *covariant*, *instant-form*, and *light-front* formulations
- \rightarrow consider simple test case: nucleon self-energy

From lowest order PV Lagrangian

$$\Sigma = i \left(\frac{g_{\pi NN}}{2M}\right)^2 \overline{u}(p) \int \frac{d^4k}{(2\pi)^4} \left(k \gamma_5 \vec{\tau} \right) \frac{i \left(\not p - k + M \right)}{D_N} (\gamma_5 k \vec{\tau}) \frac{i}{D_\pi^2} u(p)$$

Goldberger-Treiman $\frac{g_A}{f_\pi} = \frac{g_{\pi NN}}{M}$ $D_\pi \equiv k^2 - m_\pi^2 + i\varepsilon$ $D_N \equiv (p-k)^2 - M^2 + i\varepsilon$

-> rearrange in more transparent "reduced" form

C.-R. Ji, WM, Thomas, PRD 80, 054018 (2009)

Covariant (dimensional regularization)

$$\int d^{4-2\varepsilon}k \frac{1}{D_{\pi}D_N} = -i\pi^2 \left(\gamma + \log \pi - \frac{1}{\varepsilon} + \int_0^1 dx \log \frac{(1-x)^2 M^2 + xm_{\pi}^2}{\mu^2} + \mathcal{O}(\varepsilon)\right)$$
$$\int d^{4-2\varepsilon}k \frac{1}{D_N} = -i\pi^2 M^2 \left(\gamma + \log \pi - \frac{1}{\varepsilon} + \log \frac{\mu^2}{M^2} + \mathcal{O}(\varepsilon)\right)$$

 \rightarrow combining terms gives well-known m_{π}^3 LNA behavior (from $1/D_{\pi}D_N$ term)

$$\Sigma_{\rm cov}^{\rm LNA} = -\frac{3g_A^2}{32\pi f_\pi^2} \left(m_\pi^3 + \frac{1}{2\pi} \frac{m_\pi^4}{M} \log m_\pi^2 + \mathcal{O}(m_\pi^5) \right)$$

Equal time (rest frame)

$$\int d^4k \frac{1}{D_{\pi}D_N} = \int d^3k \int_{-\infty}^{\infty} dk_0 \frac{1}{(-2)(\omega_k - i\varepsilon)} \left(\frac{1}{k_0 - \omega_k + i\varepsilon} - \frac{1}{k_0 + \omega_k - i\varepsilon}\right)$$
$$\times \frac{1}{2(E' - i\varepsilon)} \left(\frac{1}{k_0 - E + E' - i\varepsilon} - \frac{1}{k_0 - E - E' + i\varepsilon}\right)$$

$$\omega_k = \sqrt{\mathbf{k}^2 + m_\pi^2} , \quad E' = \sqrt{\mathbf{k}^2 + M^2}$$

 \rightarrow four time-orderings

$$\Sigma_{\rm ET}^{(+-)\rm LNA} = -\frac{3g_A^2}{32\pi f_\pi^2} \left(m_\pi^3 + \frac{3}{4\pi} \frac{m_\pi^4}{M} \log m_\pi^2 + \mathcal{O}(m_\pi^5) \right)$$
$$\Sigma_{\rm ET}^{(-+)\rm LNA} = -\frac{3g_A^2}{32\pi f_\pi^2} \left(-\frac{1}{4\pi} \frac{m_\pi^4}{M} \log m_\pi^2 + \mathcal{O}(m_\pi^5) \right)$$

Equal time (infinite momentum frame)

$$\begin{split} \Sigma_{\rm IMF}^{(+-)} &= -\frac{3g_A^2 M}{16\pi^3 f_\pi^2} \int_{-\infty}^{\infty} dy \int d^2 k_\perp \frac{P}{2E'} \frac{1}{2\omega_k} \frac{m_\pi^2}{(E-E'-\omega_k)} & p_z \equiv P \to \infty \\ &= \frac{3g_A^2 M}{32\pi^2 f_\pi^2} \int_0^1 dy \int_0^{\Lambda^2} dk_\perp^2 \frac{m_\pi^2}{k_\perp^2 + M^2 (1-y)^2 + m_\pi^2 y} & y = p_z'/p_z \\ \Sigma_{\rm IMF}^{(-+)} &= \frac{3g_A^2 M}{16\pi^3 f_\pi^2} \int_{-\infty}^{\infty} dy \int d^2 k_\perp \frac{P}{2E'} \frac{1}{2\omega_k} \frac{m_\pi^2}{(E+E'+\omega_k)} &= \mathcal{O}(1/P^2) \end{split}$$

 \rightarrow nonanalytic behavior as for rest frame expression

$$\Sigma_{\rm IMF}^{\rm LNA} = \Sigma_{\rm IMF}^{(+-)\rm LNA} = -\frac{3g_A^2}{32\pi f_\pi^2} \left(m_\pi^3 + \frac{1}{2\pi} \frac{m_\pi^4}{M} \log m_\pi^2 + \mathcal{O}(m_\pi^5) \right)$$

$$\int dk^{+} dk^{-} d^{2} k_{\perp} \frac{1}{D_{\pi} D_{N}} = \frac{1}{p^{+}} \int_{-\infty}^{\infty} \frac{dx}{x(x-1)} d^{2} k_{\perp} \int dk^{-} \left(k^{-} - \frac{k_{\perp}^{2} + m_{\pi}^{2}}{xp^{+}} + \frac{i\varepsilon}{xp^{+}}\right)^{-1} \\ \times \left(k^{-} - \frac{M^{2}}{p^{+}} - \frac{k_{\perp}^{2} + M^{2}}{(x-1)p^{+}} + \frac{i\varepsilon}{(x-1)p^{+}}\right)^{-1} \\ = 2\pi^{2} i \int_{0}^{1} dx \ dk_{\perp}^{2} \ \frac{1}{k_{\perp}^{2} + (1-x)m_{\pi}^{2} + x^{2}M^{2}} \\ x = k^{+}/p^{+}$$

 \rightarrow identical nonanalytic results as covariant & instant form

$$\Sigma_{\rm LF}^{\rm LNA} = -\frac{3g_A^2}{32\pi f_\pi^2} \left(m_\pi^3 + \frac{1}{2\pi} \frac{m_\pi^4}{M} \log m_\pi^2 + \mathcal{O}(m_\pi^5) \right)$$

C.-R. Ji, WM, Thomas, PRD 80, 054018 (2009)

Light-front

→ $1/D_N$ "tadpole" term has k^- pole that depends on k^+ and moves to infinity as $k^+ \rightarrow 0$ ("treacherous" in LF dynamics)

 \rightarrow use LF cylindrical coordinates $k^+ = r \cos \phi, \ k^- = r \sin \phi$

$$\int d^4k \frac{1}{D_N} = \frac{1}{2} \int d^2k_{\perp} \int \frac{dk^+}{k^+} \int dk^- \left(k^- - \frac{k_{\perp}^2 + M^2}{k^+} + \frac{i\varepsilon}{k^+}\right)^{-1}$$

$$= -2\pi \int d^2k_{\perp} \left[\int_0^{r_0} dr \frac{r}{\sqrt{r_0^4 - r^4}} + i \lim_{R \to \infty} \int_{r_0}^R dr \frac{r}{\sqrt{r^4 - r_0^4}} \right]$$

$$= \frac{1}{2} \int d^2k_{\perp} \lim_{R \to \infty} \left(-\pi^2 + 2\pi i \log \frac{r_0^2}{R^2} + \mathcal{O}(1/R^4) \right)$$

$$r_0 = \sqrt{2(k_{\perp}^2 + M^2)}$$
contains $\log(k_{\perp}^2 + M^2)$
term as required

Pseudoscalar interaction

$$\Sigma^{\text{PS}} = ig_{\pi NN}^2 \,\overline{u}(p) \int \frac{d^4k}{(2\pi)^4} \,(\gamma_5 \vec{\tau}) \,\frac{i\,(\not\!p - \not\!k + M)}{D_N} (\gamma_5 \vec{\tau}) \frac{i}{D_\pi^2} \,u(p)$$
$$= -\frac{3ig_A^2 M}{2f_\pi^2} \int \frac{d^4k}{(2\pi)^4} \left[\frac{m_\pi^2}{D_\pi D_N} + \frac{1}{D_N} - \frac{1}{D_\pi} \right]$$

- → contains additional ("treacherous") pion "tadpole" term
- \rightarrow similar evaluation as for $1/D_N$ term

$$\Sigma_{\text{LNA}}^{\text{PS}} = \frac{3g_A^2}{32\pi f_\pi^2} \left(\frac{M}{\pi} m_\pi^2 \log m_\pi^2 - m_\pi^3 - \frac{m_\pi^4}{2\pi M^2} \log \frac{m_\pi^2}{M^2} + \mathcal{O}(m_\pi^5) \right)$$

additional *lower order* term in PS theory!

- Alberg & Miller claim on light-front $\Sigma^{PS} = \Sigma^{PV}$
 - form factor removes $k^+=0$ contribution *PRL 108*, 172001 (2012)
- In practice, AM drop "treacherous" $k^+=0$ (end-point) term $\Sigma^{PS} = \Sigma^{PV} + \Sigma^{PS}_{end-pt}$

after which PS result happens to coincide with PV

→ but, even with form factors, end-point term is non-zero

$$\Sigma_{\rm end-pt}^{\rm PS} = \frac{3g_A^2 M}{16\pi^2 f_\pi^2} \int_0^\infty dt \frac{\sqrt{t} \, F^2(m_\pi^2, -t)}{\sqrt{t+m_\pi^2}} \quad \stackrel{\rm LNA}{\longrightarrow} \quad \frac{3g_A^2}{32\pi f_\pi^2} \frac{M}{\pi} m_\pi^2 \log m_\pi^2$$

Ji, WM, Thomas, arXiv:1206.3671

 \rightarrow ansatz does not work for other quantities *e.g.* vertex renormalization

Vertex corrections

- Pion cloud corrections to electromagnetic N coupling
 - $\rightarrow N \text{ rainbow (c), } \pi \text{ rainbow (d),} \\ \text{Weinberg-Tomozawa (e),} \\ \pi \text{ tadpole (f), } N \text{ tadpole (g)}$

Vertex renormalization

 $(Z_1^{-1} - 1) \,\bar{u}(p) \,\gamma^{\mu} \,u(p) = \bar{u}(p) \,\Lambda^{\mu} \,u(p)$

- \rightarrow taking "+" components: $Z_1^{-1} 1 \approx 1 Z_1 = \frac{M}{p^+} \bar{u}(p) \Lambda^+ u(p)$
- \rightarrow e.g. for N rainbow contribution,

$$\Lambda^N_\mu = -\frac{\partial \hat{\Sigma}}{\partial p^\mu}$$

Vertex corrections

Define light-cone momentum distributions $f_i(y)$ $1 - Z_1^i = \int dy f_i(y)$

where
$$f_{\pi}(y) = f^{(\text{on})}(y) - f^{(\delta)}(y)$$

 $f_{N}(y) = f^{(\text{on})}(y) - f^{(\text{off})}(y) + f^{(\delta)}(y)$
 $f_{\text{WT}}(y) = -f^{(\text{off})}(y) + 2f^{(\delta)}(y)$
 $f_{\pi(\text{tad})}(y) = -f_{N(\text{tad})}(y) = f^{(\text{tad})}(y)$

with components

$$\begin{split} f^{(\text{on})}(y) &= \frac{g_A^2 M^2}{(4\pi f_\pi)^2} \int dk_\perp^2 \, \frac{y(k_\perp^2 + y^2 M^2)}{[k_\perp^2 + y^2 M^2 + (1 - y)m_\pi^2]^2} \\ f^{(\text{off})}(y) &= \frac{g_A^2 M^2}{(4\pi f_\pi)^2} \int dk_\perp^2 \, \frac{y}{k_\perp^2 + y^2 M^2 + (1 - y)m_\pi^2} \\ f^{(\delta)}(y) &= -\frac{g_A^2}{4(4\pi f_\pi)^2} \int dk_\perp^2 \, \log\left(\frac{k_\perp^2 + m_\pi^2}{\mu^2}\right) \delta(y) \\ f^{(\text{tad})}(y) &= -\frac{1}{2(4\pi f_\pi)^2} \int dk_\perp^2 \, \log\left(\frac{k_\perp^2 + m_\pi^2}{\mu^2}\right) \delta(y) \end{split}$$

- Pion distribution $f_{\pi}(y)$ contains *on-shell* contribution $f^{(on)}(y)$ equivalent to PS result
- Nucleon distribution $f_N(y)$ contains in addition new off-shell contribution $f^{(off)}(y)$
- Both contain $\delta(y)$ components $f^{(\delta)}(y)$ which are present only in PV theory
- Weinberg-Tomozawa term f^(WT)(y) needed for gauge invariance

$$(1 - Z_1^N) = (1 - Z_1^{\pi}) + (1 - Z_1^{WT})$$

■ Nucleon and pion tadpole terms equal & opposite $(1 - Z_1^{\pi \text{ (tad)}}) + (1 - Z_1^{N \text{ (tad)}}) = 0$

Nonanalytic behavior of vertex renormalization factors

$$\begin{split} 1 - Z_1^N & \xrightarrow{\text{NA}} \frac{3g_A^2}{4(4\pi f_\pi)^2} \left\{ m_\pi^2 \log m_\pi^2 \ - \ \pi \frac{m_\pi^3}{M} \ - \ \frac{2m_\pi^4}{3M^2} \log m_\pi^2 + \ \mathcal{O}(m_\pi^5) \right\} \\ 1 - Z_1^\pi & \xrightarrow{\text{NA}} \frac{3g_A^2}{4(4\pi f_\pi)^2} \left\{ m_\pi^2 \log m_\pi^2 \ - \ \frac{5\pi}{3} \frac{m_\pi^3}{M} \ - \ \frac{m_\pi^4}{M^2} \log m_\pi^2 + \ \mathcal{O}(m_\pi^5) \right\} \\ 1 - Z_1^{\text{WT}} & \xrightarrow{\text{NA}} \frac{3g_A^2}{4(4\pi f_\pi)^2} \left\{ \frac{2\pi}{3} \frac{m_\pi^3}{M} \ - \ \frac{m_\pi^4}{3M^2} \log m_\pi^2 + \ \mathcal{O}(m_\pi^5) \right\} \\ 1 - Z_1^{N \text{ (tad)}} & \xrightarrow{\text{NA}} - \frac{1}{2(4\pi f_\pi)^2} \ m_\pi^2 \log m_\pi^2 \\ 1 - Z_1^{\pi \text{ (tad)}} & \xrightarrow{\text{NA}} - \frac{1}{2(4\pi f_\pi)^2} \ m_\pi^2 \log m_\pi^2 \end{split}$$

- \rightarrow cancellation of $m_{\pi}^2 \log m_{\pi}^2$ terms in WT contribution
- \rightarrow demonstration of gauge invariance condition (in fact, to *all* orders!)

1

Nonanalytic behavior of vertex renormalization factors

	$1/D_{\pi}D_N^2$	$1/D_{\pi}^2 D_N$	$1/D_{\pi}D_N$	$1/D_{\pi}$ or $1/D_{\pi}^2$	sum (PV)	sum (PS)
$1 - Z_1^N$	$g_A^2 *$	0	$-rac{1}{2}g_A^2$	$rac{1}{4}g_A^2$	$rac{3}{4}g_A^2$	g_A^2
$1-Z_1^{\pi}$	0	g_A^2 *	0	$-rac{1}{4}g_A^2$	$rac{3}{4}g_A^2$	g_A^2
$1-Z_1^{\rm WT}$	0	0	$-rac{1}{2}g_A^2$	$rac{1}{2}g_A^2$	0	0
$1-Z_1^{N \operatorname{tad}}$	0	0	0	-1/2	-1/2	0
$1 - Z_1^{\pi \operatorname{tad}}$	0	0	0	1/2	1/2	0
	* alsc	o in PS	in u	in units of $rac{1}{(4\pi f_\pi)^2}m_\pi^2\log m_\pi^2$		

 \rightarrow origin of ChPT vs. Sullivan process difference clear

$$\left(1 - Z_1^{N(\text{PV})}\right)_{\text{LNA}} = \frac{3}{4} \left(1 - Z_1^{N(\text{PS})}\right)_{\text{LNA}}$$

Moments of PDFs

PDF moments related to nucleon matrix elements of local twist-2 operators

$$\langle N | \widehat{\mathcal{O}}_{q}^{\mu_{1} \cdots \mu_{n}} | N \rangle = 2 \langle x^{n-1} \rangle_{q} p^{\{\mu_{1}} \cdots p^{\mu_{n}\}}$$

 \rightarrow *n*-th moment of (spin-averaged) PDF q(x)

$$\langle x^{n-1} \rangle_q = \int_0^1 dx \, x^{n-1} \left(q(x) + (-1)^n \bar{q}(x) \right)$$

$$\rightarrow$$
 operator is $\widehat{\mathcal{O}}_{q}^{\mu_{1}\cdots\mu_{n}} = \overline{\psi}\gamma^{\{\mu_{1}}iD^{\mu_{2}}\cdots iD^{\mu_{n}\}}\psi - \text{traces}$

■ Lowest (*n*=1) moment $\langle x^0 \rangle_q \equiv \mathcal{M}_N + \mathcal{M}_\pi$ given by vertex renormalization factors $\sim 1 - Z_1^i$

For couplings involving nucleons

$$\mathcal{M}_{N}^{(p)} = Z_{2} + (1 - Z_{1}^{N}) + (1 - Z_{1}^{N \,(\text{tad})})$$
$$\mathcal{M}_{N}^{(n)} = 2(1 - Z_{1}^{N}) - (1 - Z_{1}^{N \,(\text{tad})})$$

 \rightarrow wave function renormalization

$$1 - Z_2 = (1 - Z_1^p) + (1 - Z_1^n) \equiv 3(1 - Z_1^N)$$

For couplings involving only pions

$$\mathcal{M}_{\pi}^{(p)} = 2(1 - Z_{1}^{\pi}) + 2(1 - Z_{1}^{WT}) + (1 - Z_{1}^{\pi \,(\text{tad})})$$
$$\mathcal{M}_{\pi}^{(n)} = -2(1 - Z_{1}^{\pi}) - 2(1 - Z_{1}^{WT}) - (1 - Z_{1}^{\pi \,(\text{tad})})$$

Nonanalytic behavior

$$\mathcal{M}_{N}^{(p)} \xrightarrow{\text{LNA}} 1 - \frac{(3g_{A}^{2} + 1)}{2(4\pi f_{\pi})^{2}} m_{\pi}^{2} \log m_{\pi}^{2} \qquad \qquad \mathcal{M}_{\pi}^{(p)} \xrightarrow{\text{LNA}} \frac{(3g_{A}^{2} + 1)}{2(4\pi f_{\pi})^{2}} m_{\pi}^{2} \log m_{\pi}^{2} \qquad \qquad \mathcal{M}_{\pi}^{(n)} \xrightarrow{\text{LNA}} - \frac{(3g_{A}^{2} + 1)}{2(4\pi f_{\pi})^{2}} m_{\pi}^{2} \log m_{\pi}^{2} \qquad \qquad \mathcal{M}_{\pi}^{(n)} \xrightarrow{\text{LNA}} - \frac{(3g_{A}^{2} + 1)}{2(4\pi f_{\pi})^{2}} m_{\pi}^{2} \log m_{\pi}^{2}$$

- \rightarrow no pion corrections to isosclar moments
- → isovector correction agrees with ChPT calculation

$$\mathcal{M}_{N}^{(p-n)} \xrightarrow{\text{LNA}} 1 - \frac{\left(4g_{A}^{2} + [1 - g_{A}^{2}]\right)}{(4\pi f_{\pi})^{2}} m_{\pi}^{2} \log m_{\pi}^{2}$$
$$\mathcal{M}_{\pi}^{(p-n)} \xrightarrow{\text{LNA}} \frac{\left(4g_{A}^{2} + [1 - g_{A}^{2}]\right)}{\sqrt{(4\pi f_{\pi})^{2}}} m_{\pi}^{2} \log m_{\pi}^{2}$$
$$PS (\text{``on-shell''}) \qquad \delta\text{-function}$$
$$\text{contribution} \qquad \text{contribution}$$

Pion distribution functions

Using phenomenological form factors, compute functions $f_i(y)$ numerically

 \rightarrow for transverse momentum cut-off $F(k_{\perp}) = \Theta(k_{\perp}^2 - \Lambda^2)$

→ symmetry relation respected $f_{\pi}(y) + f_{WT}(y) + \frac{1}{2}f_{\pi(tad)}(y) = f_N(y) - \frac{1}{2}f_{N(tad)}(y)$

Pion distribution functions

- Using phenomenological form factors, compute functions $f_i(y)$ numerically
 - → S-dependent (dipole) form factor $s_{\pi N} = \frac{k_{\perp}^2 + m_{\pi}^2}{y} + \frac{k_{\perp}^2 + M^2}{1-y}$

Hendricks, Ji, WM, Thomas (2012)

Summary

Equivalence demonstrated between self-energy in equal-time, covariant, and light-front formalisms

 $\Sigma_{\rm cov}^{\rm LNA} = \Sigma_{\rm ET}^{(+-)\rm LNA} + \Sigma_{\rm ET}^{(-+)\rm LNA} = \Sigma_{\rm IMF}^{(+-)\rm LNA} = \Sigma_{\rm LF}^{\rm LNA}$

- \rightarrow non-trivial due to end-point singularities
- \rightarrow PV and PS results clearly differ
- Vertex corrections satisfy gauge invariance relations $(1 - Z_1^N) = (1 - Z_1^{\pi}) + (1 - Z_1^{WT})$
 - → difference between PDF moments in ChPT (PV) & "Sullivan" process (PS)
 - → model-independent constraints on pion light-cone momentum distributions (impact on $\overline{d} - \overline{u}$ data analysis in progress)