Equivalence of pion loops in equal time and light-front dynamics

Wally Melnitchouk

Jefferson Lab

with Chueng Ji (NCSU),
Khalida Hendricks (NCSU), Tony Thomas (Adelaide)

Background

- Large flavor asymmetry in proton sea suggests important role of π cloud even in high-energy reactions
\rightarrow Sullivan process

Sullivan, PRD 5, 1732 (1972)
Thomas, PLB 126, 97 (1983)

$$
(\bar{d}-\bar{u})(x)=\int_{x}^{1} \frac{d y}{y} f_{\pi}(y) \bar{q}^{\pi}(x / y)
$$

pion light-cone momentum distribution in nucleon

■ Chiral expansion of moments of $f_{\pi}(y)$

\rightarrow model-independent leading nonanalytic (LNA) behavior

$$
\left\langle x^{0}\right\rangle_{\bar{d}-\bar{u}} \equiv \int_{0}^{1} d x(\bar{d}-\bar{u})=\frac{2 g_{A}^{2}}{\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{2} \log \left(m_{\pi}^{2} / \mu^{2}\right)
$$

Thomas, WM, Steffens, PRL 85, 2892 (2000)

- Nonanalytic behavior vital for chiral extrapolation of lattice data

- Direct calculation of matrix elements of local twist-2 operators in ChPT disagrees with "Sullivan" result

$$
\left\langle x^{n}\right\rangle_{u-d}=a_{n}\left(1+\frac{\left(3 g_{A}^{2}+1\right)}{\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{2} \log \left(m_{\pi}^{2} / \mu^{2}\right)\right)+\mathcal{O}\left(m_{\pi}^{2}\right)
$$

$$
\text { Chen, X. Ji, PLB 523, } 107 \text { (2001) }
$$

$$
\text { Arndt, Savage, NPA 692, } 429 \text { (2002) }
$$

\rightarrow is there a problem with application of ChPT or "Sullivan process" to DIS?
\rightarrow is light-front treatment of pion loops (zero modes) problematic?
\rightarrow investigate relation between covariant, instant-form, and light-front formulations
\rightarrow consider simple test case: nucleon self-energy

Self-energy

- From lowest order PV Lagrangian

$$
\begin{aligned}
& \Sigma=i\left(\frac{g_{\pi N N}}{2 M}\right)^{2} \bar{u}(p) \int \frac{d^{4} k}{(2 \pi)^{4}}\left(\not k \gamma_{5} \vec{\tau}\right) \frac{i(\not p-\not k+M)}{D_{N}}\left(\gamma_{5} \not / \vec{\tau}\right) \frac{i}{D_{\pi}^{2}} u(p) \\
& \text { Goldberger-Treiman } \frac{g_{A}}{f_{\pi}}=\frac{g_{\pi N N}}{M}
\end{aligned} \begin{aligned}
& D_{\pi} \equiv k^{2}-m_{\pi}^{2}+i \varepsilon \\
& D_{N} \equiv(p-k)^{2}-M^{2}+i \varepsilon
\end{aligned}
$$

\rightarrow rearrange in more transparent "reduced" form

$$
\begin{aligned}
& \Sigma=-\frac{3 i g_{A}^{2}}{4 f_{\pi}^{2}} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{2 M}\left[4 M^{2}\left(\frac{m_{\pi}^{2}}{D_{\pi} D_{N}}+\frac{1}{D_{N}}\right)+\frac{2 p_{i}}{D_{\pi}}\right]
\end{aligned}
$$

C.-R.Ji, WM, Thomas, PRD 80, 054018 (2009)

Self-energy

- Covariant (dimensional regularization)

$$
\begin{aligned}
\int d^{4-2 \varepsilon} k \frac{1}{D_{\pi} D_{N}} & =-i \pi^{2}\left(\gamma+\log \pi-\frac{1}{\varepsilon}+\int_{0}^{1} d x \log \frac{(1-x)^{2} M^{2}+x m_{\pi}^{2}}{\mu^{2}}+\mathcal{O}(\varepsilon)\right) \\
\int d^{4-2 \varepsilon} k \frac{1}{D_{N}} & =-i \pi^{2} M^{2}\left(\gamma+\log \pi-\frac{1}{\varepsilon}+\log \frac{\mu^{2}}{M^{2}}+\mathcal{O}(\varepsilon)\right)
\end{aligned}
$$

\rightarrow combining terms gives well-known m_{π}^{3} LNA behavior (from $1 / D_{\pi} D_{N}$ term)

$$
\Sigma_{\mathrm{cov}}^{\mathrm{LNA}}=-\frac{3 g_{A}^{2}}{32 \pi f_{\pi}^{2}}\left(m_{\pi}^{3}+\frac{1}{2 \pi} \frac{m_{\pi}^{4}}{M} \log m_{\pi}^{2}+\mathcal{O}\left(m_{\pi}^{5}\right)\right)
$$

Self-energy

- Equal time (rest frame)

$$
\begin{array}{r}
\int d^{4} k \frac{1}{D_{\pi} D_{N}}=\int d^{3} k \int_{-\infty}^{\infty} d k_{0} \frac{1}{(-2)\left(\omega_{k}-i \varepsilon\right)}\left(\frac{1}{k_{0}-\omega_{k}+i \varepsilon}-\frac{1}{k_{0}+\omega_{k}-i \varepsilon}\right) \\
\times \frac{1}{2\left(E^{\prime}-i \varepsilon\right)}\left(\frac{1}{k_{0}-E+E^{\prime}-i \varepsilon}-\frac{1}{k_{0}-E-E^{\prime}+i \varepsilon}\right) \\
\omega_{k}=\sqrt{\mathbf{k}^{2}+m_{\pi}^{2}}, \quad E^{\prime}=\sqrt{\mathbf{k}^{2}+M^{2}}
\end{array}
$$

\rightarrow four time-orderings

$$
\begin{aligned}
\Sigma_{\mathrm{ET}}^{(+-) \mathrm{LNA}} & =-\frac{3 g_{A}^{2}}{32 \pi f_{\pi}^{2}}\left(m_{\pi}^{3}+\frac{3}{4 \pi} \frac{m_{\pi}^{4}}{M} \log m_{\pi}^{2}+\mathcal{O}\left(m_{\pi}^{5}\right)\right) \\
\Sigma_{\mathrm{ET}}^{(-+) \mathrm{LNA}} & =-\frac{3 g_{A}^{2}}{32 \pi f_{\pi}^{2}}\left(\quad-\frac{1}{4 \pi} \frac{m_{\pi}^{4}}{M} \log m_{\pi}^{2}+\mathcal{O}\left(m_{\pi}^{5}\right)\right)
\end{aligned}
$$

Self-energy

- Equal time (infinite momentum frame)

$$
\begin{array}{rlr}
\Sigma_{\mathrm{IMF}}^{(+-)} & =-\frac{3 g_{A}^{2} M}{16 \pi^{3} f_{\pi}^{2}} \int_{-\infty}^{\infty} d y \int d^{2} k_{\perp} \frac{P}{2 E^{\prime}} \frac{1}{2 \omega_{k}} \frac{m_{\pi}^{2}}{\left(E-E^{\prime}-\omega_{k}\right)} & p_{z} \equiv \\
& =\frac{3 g_{A}^{2} M}{32 \pi^{2} f_{\pi}^{2}} \int_{0}^{1} d y \int_{0}^{\Lambda^{2}} d k_{\perp}^{2} \frac{m_{\pi}^{2}}{k_{\perp}^{2}+M^{2}(1-y)^{2}+m_{\pi}^{2} y} & y= \\
\Sigma_{\mathrm{IMF}}^{(-+)} & =\frac{3 g_{A}^{2} M}{16 \pi^{3} f_{\pi}^{2}} \int_{-\infty}^{\infty} d y \int d^{2} k_{\perp} \frac{P}{2 E^{\prime}} \frac{1}{2 \omega_{k}} \frac{m_{\pi}^{2}}{\left(E+E^{\prime}+\omega_{k}\right)}=\mathcal{O}\left(1 / P^{2}\right)
\end{array}
$$

\rightarrow nonanalytic behavior as for rest frame expression

$$
\Sigma_{\mathrm{IMF}}^{\mathrm{LNA}}=\Sigma_{\mathrm{IMF}}^{(+-) \mathrm{LNA}}=-\frac{3 g_{A}^{2}}{32 \pi f_{\pi}^{2}}\left(m_{\pi}^{3}+\frac{1}{2 \pi} \frac{m_{\pi}^{4}}{M} \log m_{\pi}^{2}+\mathcal{O}\left(m_{\pi}^{5}\right)\right)
$$

Self-energy

- Light-front

$$
\begin{aligned}
& \int d k^{+} d k^{-} d^{2} k_{\perp} \frac{1}{D_{\pi} D_{N}}= \frac{1}{p^{+}} \int_{-\infty}^{\infty} \frac{d x}{x(x-1)} d^{2} k_{\perp} \int d k^{-}\left(k^{-}-\frac{k_{\perp}^{2}+m_{\pi}^{2}}{x p^{+}}+\frac{i \varepsilon}{x p^{+}}\right)^{-1} \\
& \times\left(k^{-}-\frac{M^{2}}{p^{+}}-\frac{k_{\perp}^{2}+M^{2}}{(x-1) p^{+}}+\frac{i \varepsilon}{(x-1) p^{+}}\right)^{-1} \\
&=2 \pi^{2} i \int_{0}^{1} d x d k_{\perp}^{2} \frac{1}{k_{\perp}^{2}+(1-x) m_{\pi}^{2}+x^{2} M^{2}} x=k^{+} / p^{+}
\end{aligned}
$$

\rightarrow identical nonanalytic results as covariant \& instant form

$$
\Sigma_{\mathrm{LF}}^{\mathrm{LNA}}=-\frac{3 g_{A}^{2}}{32 \pi f_{\pi}^{2}}\left(m_{\pi}^{3}+\frac{1}{2 \pi} \frac{m_{\pi}^{4}}{M} \log m_{\pi}^{2}+\mathcal{O}\left(m_{\pi}^{5}\right)\right)
$$

Self-energy

- Light-front
$\rightarrow 1 / D_{N}$ "tadpole" term has k^{-}pole that depends on k^{+} and moves to infinity as $k^{+} \rightarrow 0$
("treacherous" in LF dynamics)
\rightarrow use LF cylindrical coordinates $k^{+}=r \cos \phi, k^{-}=r \sin \phi$

$$
\begin{aligned}
& \int d^{4} k \frac{1}{D_{N}}= \frac{1}{2} \int d^{2} k_{\perp} \int \frac{d k^{+}}{k^{+}} \int d k^{-}\left(k^{-}-\frac{k_{\perp}^{2}+M^{2}}{k^{+}}+\frac{i \varepsilon}{k^{+}}\right)^{-1} \\
&=-2 \pi \int d^{2} k_{\perp}\left[\int_{0}^{r_{0}} d r \frac{r}{\sqrt{r_{0}^{4}-r^{4}}}+i \lim _{R \rightarrow \infty} \int_{r_{0}}^{R} d r \frac{r}{\sqrt{r^{4}-r_{0}^{4}}}\right] \\
&= \frac{1}{2} \int d^{2} k_{\perp} \lim _{R \rightarrow \infty}\left(-\pi^{2}+2 \pi i \log \frac{r_{0}^{2}}{R^{2}}+\mathcal{O}\left(1 / R^{4}\right)\right) \\
& \quad r_{0}=\sqrt{2\left(k_{\perp}^{2}+M^{2}\right)} \\
& \quad \text { term as required }
\end{aligned}
$$

Self-energy

- Pseudoscalar interaction

$$
\begin{aligned}
\Sigma^{\mathrm{PS}} & =i g_{\pi N N}^{2} \bar{u}(p) \int \frac{d^{4} k}{(2 \pi)^{4}}\left(\gamma_{5} \vec{\tau}\right) \frac{i(p p-\nmid+M)}{D_{N}}\left(\gamma_{5} \vec{\tau}\right) \frac{i}{D_{\pi}^{2}} u(p) \\
& =-\frac{3 i g_{A}^{2} M}{2 f_{\pi}^{2}} \int \frac{d^{4} k}{(2 \pi)^{4}}\left[\frac{m_{\pi}^{2}}{D_{\pi} D_{N}}+\frac{1}{D_{N}}-\frac{1}{D_{\pi}}\right]
\end{aligned}
$$

\rightarrow contains additional ("treacherous") pion "tadpole" term
\rightarrow similar evaluation as for $1 / D_{N}$ term

$$
\Sigma_{\mathrm{LNA}}^{\mathrm{PS}}=\frac{3 g_{A}^{2}}{32 \pi f_{\pi}^{2}}\left(\frac{M}{\pi} m_{\pi}^{2} \log m_{\pi}^{2}-m_{\pi}^{3}-\frac{m_{\pi}^{4}}{2 \pi M^{2}} \log \frac{m_{\pi}^{2}}{M^{2}}+\mathcal{O}\left(m_{\pi}^{5}\right)\right)
$$

$$
\uparrow
$$

additional lower order term in PS theory!

Self-energy

- Alberg \& Miller claim on light-front $\Sigma^{\mathrm{PS}}=\Sigma^{\mathrm{PV}}$
- form factor removes $k^{+}=0$ contribution PRL 108, 172001 (2012)
- In practice, AM drop "treacherous" $k^{+}=0$ (end-point) term

$$
\Sigma^{\mathrm{PS}}=\Sigma^{\mathrm{PV}}+\Sigma_{\text {end-pt }}^{\mathrm{PS}}
$$

after which PS result happens to coincide with PV
\rightarrow but, even with form factors, end-point term is non-zero

$$
\Sigma_{\text {end }-\mathrm{pt}}^{\mathrm{PS}}=\frac{3 g_{A}^{2} M}{16 \pi^{2} f_{\pi}^{2}} \int_{0}^{\infty} d t \frac{\sqrt{t} F^{2}\left(m_{\pi}^{2},-t\right)}{\sqrt{t+m_{\pi}^{2}}} \quad \stackrel{\text { LNA }}{\longrightarrow} \frac{3 g_{A}^{2}}{32 \pi f_{\pi}^{2}} \frac{M}{\pi} m_{\pi}^{2} \log m_{\pi}^{2}
$$

Ji, WM, Thomas, arXiv:1206.3671
\rightarrow ansatz does not work for other quantities e.g. vertex renormalization

Vertex corrections

- Pion cloud corrections to electromagnetic N coupling

(c)

(d)

Weinberg-Tomozawa (e), π tadpole (f), N tadpole (g)

- Vertex renormalization

$$
\left(Z_{1}^{-1}-1\right) \bar{u}(p) \gamma^{\mu} u(p)=\bar{u}(p) \Lambda^{\mu} u(p)
$$

\rightarrow taking "+" components: $Z_{1}^{-1}-1 \approx 1-Z_{1}=\frac{M}{p^{+}} \bar{u}(p) \Lambda^{+} u(p)$
\rightarrow e.g. for N rainbow contribution,

$$
\Lambda_{\mu}^{N}=-\frac{\partial \hat{\Sigma}}{\partial p^{\mu}}
$$

Vertex corrections

- Define light-cone momentum distributions $f_{i}(y)$

$$
1-Z_{1}^{i}=\int d y f_{i}(y)
$$

where $\quad f_{\pi}(y)=f^{(\text {on })}(y)-f^{(\delta)}(y)$

$$
\begin{aligned}
f_{N}(y) & =f^{(\mathrm{on})}(y)-f^{(\mathrm{off})}(y)+f^{(\delta)}(y) \\
f_{\mathrm{WT}}(y) & =-f^{(\mathrm{off})}(y)+2 f^{(\delta)}(y) \\
f_{\pi(\mathrm{tad})}(y) & =-f_{N(\mathrm{tad})}(y)=f^{(\mathrm{tad})}(y)
\end{aligned}
$$

with components $\quad f^{(\mathrm{on})}(y)=\frac{g_{A}^{2} M^{2}}{\left(4 \pi f_{\pi}\right)^{2}} \int d k_{\perp}^{2} \frac{y\left(k_{\perp}^{2}+y^{2} M^{2}\right)}{\left[k_{\perp}^{2}+y^{2} M^{2}+(1-y) m_{\pi}^{2}\right]^{2}}$

$$
\begin{aligned}
f^{(\mathrm{off})}(y) & =\frac{g_{A}^{2} M^{2}}{\left(4 \pi f_{\pi}\right)^{2}} \int d k_{\perp}^{2} \frac{y}{k_{\perp}^{2}+y^{2} M^{2}+(1-y) m_{\pi}^{2}} \\
f^{(\delta)}(y) & =-\frac{g_{A}^{2}}{4\left(4 \pi f_{\pi}\right)^{2}} \int d k_{\perp}^{2} \log \left(\frac{k_{\perp}^{2}+m_{\pi}^{2}}{\mu^{2}}\right) \delta(y) \\
f^{(\mathrm{tad})}(y) & =-\frac{1}{2\left(4 \pi f_{\pi}\right)^{2}} \int d k_{\perp}^{2} \log \left(\frac{k_{\perp}^{2}+m_{\pi}^{2}}{\mu^{2}}\right) \delta(y)
\end{aligned}
$$

- Pion distribution $f_{\pi}(y)$ contains on-shell contribution $f^{\text {(on) }}(y)$ equivalent to PS result
- Nucleon distribution $f_{N}(y)$ contains in addition new off-shell contribution $f^{(\text {off })}(y)$
- Both contain $\delta(y)$ components $f^{(\delta)}(y)$ which are present only in PV theory
- Weinberg-Tomozawa term $f^{(\mathrm{WT})}(y)$ needed for gauge invariance

$$
\left(1-Z_{1}^{N}\right)=\left(1-Z_{1}^{\pi}\right)+\left(1-Z_{1}^{\mathrm{WT}}\right)
$$

- Nucleon and pion tadpole terms equal \& opposite

$$
\left(1-Z_{1}^{\pi(\mathrm{tad})}\right)+\left(1-Z_{1}^{N(\mathrm{tad})}\right)=0
$$

- Nonanalytic behavior of vertex renormalization factors

$$
\begin{aligned}
& 1-Z_{1}^{N} \xrightarrow{\mathrm{NA}} \frac{3 g_{A}^{2}}{4\left(4 \pi f_{\pi}\right)^{2}}\left\{m_{\pi}^{2} \log m_{\pi}^{2}-\pi \frac{m_{\pi}^{3}}{M}-\frac{2 m_{\pi}^{4}}{3 M^{2}} \log m_{\pi}^{2}+\mathcal{O}\left(m_{\pi}^{5}\right)\right\} \\
& 1-Z_{1}^{\pi} \xrightarrow{\mathrm{NA}} \frac{3 g_{A}^{2}}{4\left(4 \pi f_{\pi}\right)^{2}}\left\{m_{\pi}^{2} \log m_{\pi}^{2}-\frac{5 \pi}{3} \frac{m_{\pi}^{3}}{M}-\frac{m_{\pi}^{4}}{M^{2}} \log m_{\pi}^{2}+\mathcal{O}\left(m_{\pi}^{5}\right)\right\} \\
& 1-Z_{1}^{\mathrm{WT}} \xrightarrow{\mathrm{NA}} \frac{3 g_{A}^{2}}{4\left(4 \pi f_{\pi}\right)^{2}}\left\{\frac{2 \pi}{3} \frac{m_{\pi}^{3}}{M}-\frac{m_{\pi}^{4}}{3 M^{2}} \log m_{\pi}^{2}+\mathcal{O}\left(m_{\pi}^{5}\right)\right\} \\
& 1-Z_{1}^{N(\operatorname{tad})} \xrightarrow{\mathrm{NA}}-\frac{1}{2\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{2} \log m_{\pi}^{2} \\
& 1-Z_{1}^{\pi(\operatorname{tad})} \xrightarrow{\mathrm{NA}} \frac{1}{2\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{2} \log m_{\pi}^{2}
\end{aligned}
$$

\rightarrow cancellation of $m_{\pi}^{2} \log m_{\pi}^{2}$ terms in WT contribution
\rightarrow demonstration of gauge invariance condition (in fact, to all orders!)

- Nonanalytic behavior of vertex renormalization factors

	$1 / D_{\pi} D_{N}^{2}$	$1 / D_{\pi}^{2} D_{N}$	$1 / D_{\pi} D_{N}$	$1 / D_{\pi}$ or $1 / D_{\pi}^{2}$	sum (PV)	sum (PS)
$1-Z_{1}^{N}$	g_{A}^{2} *	0	$-\frac{1}{2} g_{A}^{2}$	$\frac{1}{4} g_{A}^{2}$	$\frac{3}{4} g_{A}^{2}$	g_{A}^{2}
$1-Z_{1}^{\pi}$	0	$g_{A}^{2}{ }^{*}$	0	$-\frac{1}{4} g_{A}^{2}$	$\frac{3}{4} g_{A}^{2}$	g_{A}^{2}
$1-Z_{1}^{\mathrm{WT}}$	0	0	$-\frac{1}{2} g_{A}^{2}$	$\frac{1}{2} g_{A}^{2}$	0	0
$1-Z_{1}^{N \mathrm{tad}}$	0	0	0	$-1 / 2$	$-1 / 2$	0
$1-Z_{1}^{\pi \operatorname{tad}}$	0	0	0	$1 / 2$	$1 / 2$	0
* also in PS in units of $\frac{1}{\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{2} \log m_{\pi}^{2}$						

\rightarrow origin of ChPT vs. Sullivan process difference clear

$$
\left(1-Z_{1}^{N(\mathrm{PV})}\right)_{\mathrm{LNA}}=\frac{3}{4}\left(1-Z_{1}^{N(\mathrm{PS})}\right)_{\mathrm{LNA}}
$$

Moments of PDFs

- PDF moments related to nucleon matrix elements of local twist-2 operators

$$
\langle N| \widehat{\mathcal{O}}_{q}^{\mu_{1} \cdots \mu_{n}}|N\rangle=2\left\langle x^{n-1}\right\rangle_{q} p^{\left\{\mu_{1}\right.} \cdots p^{\left.\mu_{n}\right\}}
$$

$\rightarrow n$-th moment of (spin-averaged) PDF $q(x)$

$$
\left\langle x^{n-1}\right\rangle_{q}=\int_{0}^{1} d x x^{n-1}\left(q(x)+(-1)^{n} \bar{q}(x)\right)
$$

\rightarrow operator is $\widehat{\mathcal{O}}_{q}^{\mu_{1} \cdots \mu_{n}}=\bar{\psi} \gamma^{\left\{\mu_{1}\right.} i D^{\mu_{2}} \cdots i D^{\left.\mu_{n}\right\}} \psi-$ traces

- Lowest ($n=1$) moment $\left\langle x^{0}\right\rangle_{q} \equiv \mathcal{M}_{N}+\mathcal{M}_{\pi}$ given by vertex renormalization factors $\sim 1-Z_{1}^{i}$
- For couplings involving nucleons

$$
\begin{aligned}
& \mathcal{M}_{N}^{(p)}=Z_{2}+\left(1-Z_{1}^{N}\right)+\left(1-Z_{1}^{N(t a d)}\right) \\
& \mathcal{M}_{N}^{(n)}=2\left(1-Z_{1}^{N}\right)-\left(1-Z_{1}^{N(t a d)}\right)
\end{aligned}
$$

\rightarrow wave function renormalization

$$
1-Z_{2}=\left(1-Z_{1}^{p}\right)+\left(1-Z_{1}^{n}\right) \equiv 3\left(1-Z_{1}^{N}\right)
$$

- For couplings involving only pions

$$
\begin{aligned}
& \mathcal{M}_{\pi}^{(p)}=2\left(1-Z_{1}^{\pi}\right)+2\left(1-Z_{1}^{\mathrm{WT}}\right)+\left(1-Z_{1}^{\pi(\mathrm{tad})}\right) \\
& \mathcal{M}_{\pi}^{(n)}=-2\left(1-Z_{1}^{\pi}\right)-2\left(1-Z_{1}^{\mathrm{WT}}\right)-\left(1-Z_{1}^{\pi(\mathrm{tad})}\right)
\end{aligned}
$$

- Nonanalytic behavior

$$
\begin{array}{ll}
\mathcal{M}_{N}^{(p)} \xrightarrow{\text { LNA }} 1-\frac{\left(3 g_{A}^{2}+1\right)}{2\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{2} \log m_{\pi}^{2} & \mathcal{M}_{\pi}^{(p)} \xrightarrow{\text { LNA }} \frac{\left(3 g_{A}^{2}+1\right)}{2\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{2} \log m_{\pi}^{2} \\
\mathcal{M}_{N}^{(n)} \xrightarrow{\text { LNA }} & \frac{\left(3 g_{A}^{2}+1\right)}{2\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{2} \log m_{\pi}^{2}
\end{array}
$$

\rightarrow no pion corrections to isosclar moments
\rightarrow isovector correction agrees with ChPT calculation

$$
\begin{aligned}
& \mathcal{M}_{N}^{(p-n)} \xrightarrow{\text { LNA }} 1-\frac{\left(4 g_{A}^{2}+\left[1-g_{A}^{2}\right]\right)}{\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{2} \log m_{\pi}^{2} \\
& \mathcal{M}_{\pi}^{(p-n)} \xrightarrow{\text { LNA }} \frac{\left(4 g_{A}^{2}+\left[1-g_{A}^{2}\right]\right)}{\mu\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{2} \log m_{\pi}^{2} \\
& \text { PS ("on-shell") } \\
& \text { contribution } \\
& \delta \text {-function } \\
& \text { contribution }
\end{aligned}
$$

Pion distribution functions

- Using phenomenological form factors, compute functions $f_{i}(y)$ numerically
\rightarrow for transverse momentum cut-off $F\left(k_{\perp}\right)=\Theta\left(k_{\perp}^{2}-\Lambda^{2}\right)$
large cancelations of on- and off-shell terms in N rainbow distribution

because of off-shell term
\rightarrow symmetry relation respected

$$
f_{\pi}(y)+f_{\mathrm{WT}}(y)+\frac{1}{2} f_{\pi(\mathrm{tad})}(y)=f_{N}(y)-\frac{1}{2} f_{N(\mathrm{tad})}(y)
$$

Pion distribution functions

- Using phenomenological form factors, compute functions $f_{i}(y)$ numerically
$\rightarrow S$-dependent (dipole) form factor $s_{\pi N}=\frac{k_{\perp}^{2}+m_{\pi}^{2}}{y}+\frac{k_{\perp}^{2}+M^{2}}{1-y}$

Hendricks, Ji, WM, Thomas (2012)

Summary

- Equivalence demonstrated between self-energy in equal-time, covariant, and light-front formalisms

$$
\Sigma_{\mathrm{cov}}^{\mathrm{LNA}}=\Sigma_{\mathrm{ET}}^{(+-) \mathrm{LNA}}+\Sigma_{\mathrm{ET}}^{(-+) \mathrm{LNA}}=\Sigma_{\mathrm{IMF}}^{(+-) \mathrm{LNA}}=\Sigma_{\mathrm{LF}}^{\mathrm{LNA}}
$$

\rightarrow non-trivial due to end-point singularities
\rightarrow PV and PS results clearly differ

- Vertex corrections satisfy gauge invariance relations

$$
\left(1-Z_{1}^{N}\right)=\left(1-Z_{1}^{\pi}\right)+\left(1-Z_{1}^{\mathrm{WT}}\right)
$$

\rightarrow difference between PDF moments in ChPT (PV) \& "Sullivan" process (PS)
\rightarrow model-independent constraints on pion light-cone momentum distributions (impact on $\bar{d}-\bar{u}$ data analysis in progress)

