

Hall A A_1^n Collaboration Meeting May 24, 2012

Quark spin distributions at large x

Wally Melnitchouk

Outline

Why large-x quarks are important

■ $x \rightarrow 1$ behavior from perturbative QCD → role of orbital angular momentum

- Nuclear effects in ³He
 - \rightarrow limitations of "effective polarizations"

Why large *x*?

- Most direct connection between quark distributions and models of nucleon structure is via valence quarks
 - \rightarrow most cleanly revealed at x > 0.4

Ideal testing ground for nonperturbative & perturbative $\tau \equiv \frac{1}{2} \frac{1}{2}$

 $d = \frac{d}{d} =$

ts"twistÜ(6) proton wave function

■ SU(6) symmetry

$$\rightarrow$$
 $u(x) = 2 d(x)$ for all x

•
$$\frac{d}{u} = \frac{1}{2}$$
 $\frac{F_2^n}{F_2^p} = \frac{2}{3}$

•
$$\frac{\Delta u}{u} = \frac{2}{3}$$
 $A_1^p = \frac{5}{9}$
 $\frac{\Delta d}{d} = -\frac{1}{3}$ $A_1^n = 0$

e.g. Close, "An Introduction to Quarks and Partons" (1979)

Scalar diquark dominance

 $M_{\Delta} > M \longrightarrow (qq)_1$ has larger energy than $(qq)_0$ \longrightarrow scalar diquark dominant in $x \to 1$ limit

 \rightarrow since only *u* quarks couple to scalar diquarks

•
$$\frac{d}{u} \to 0$$
 $\frac{F_2^n}{F_2^p} \to \frac{1}{4}$

•
$$\frac{\Delta u}{u} \rightarrow 1$$
 $A_1^p \rightarrow 1$
 $\frac{\Delta d}{d} \rightarrow -\frac{1}{3}$ $A_1^n \rightarrow 1$

Feynman, "Photon-Hadron Interactions" (1972) *Close*, *PLB* **43**, 422 (1973) *Close*, *Thomas*, *PLB* **212**, 227 (1988)

Local duality models

→ duality in quark models realized by summing over complete sets of *even* and *odd* parity resonances, *e.g.* 56 (L=0) and 70 (L=1) multiplets of SU(6)

representation	² 8[56 ⁺]	⁴ 10 [56 ⁺]	² 8[70 ⁻]	⁴ 8[70 ⁻]	² 10 [70 ⁻]	Total
F_1^p	$9\rho^2$	$8\lambda^2$	$9\rho^2$	0	λ^2	$18\rho^2 + 9\lambda^2$
F_1^n	$(3\rho+\lambda)^2/4$	$8\lambda^2$	$(3\rho-\lambda)^2/4$	$4\lambda^2$	λ^2	$(9\rho^2 + 27\lambda^2)/2$
g_1^p	$9\rho^2$	$-4\lambda^2$	$9\rho^2$	0	λ^2	$18\rho^2 - 3\lambda^2$
g_1^n	$(3\rho+\lambda)^2/4$	$-4\lambda^2$	$(3\rho - \lambda)^2/4$	$-2\lambda^2$	λ^2	$(9\rho^2-9\lambda^2)/2$

 λ (ρ) = (anti) symmetric component of ground state wave function

→ summing over all resonances in 56⁺ and 70⁻ multiplets $F_1^n/F_1^p \rightarrow 2/3, A_1^p \rightarrow 5/9, A_1^n \rightarrow 0$

as in parton model (if u=2d)!

Local duality models

 \rightarrow various ways of breaking SU(6) while respecting duality

• spin-1/2 dominance (Δ suppression)

$$A_1^p = \frac{19 - 23\sin^2\theta_s}{19 - 11\sin^2\theta_s} \qquad A_1^n = \frac{1 - 2\sin^2\theta_s}{1 + \sin^2\theta_s}$$

• helicity-1/2 dominance

$$A_1^p = \frac{7 - 9\sin^2 \theta_h}{7 - 5\sin^2 \theta_h} \qquad A_1^n = 1 - 2\sin^2 \theta_h$$

• antisymmetric wave function (ρ) dominance

$$A_1^p = \frac{6 - 7\sin^2 \theta_w}{6 - 3\sin^2 \theta_w} \qquad A_1^n = \frac{1 - 2\sin^2 \theta_w}{1 + 2\sin^2 \theta_w}$$

Local duality models

→ various ways of breaking SU(6) while respecting duality

Close, WM, PRC 68, 035210 (2003)

Local duality models

 \rightarrow various ways of breaking SU(6) while respecting duality

Close, WM, PRC 68, 035210 (2003)

x dependence of polarized & unpolarized PDFs correlated

■ In QCD, "exceptional" $x \rightarrow 1$ configurations of proton wave function generated from "typical" wave function (for which $x_i \sim 1/3$) by exchange of ≥ 2 hard gluons, with mass $k^2 \sim -\langle k_{\perp}^2 \rangle/(1-x)$

Farrar, Jackson, PRL 35, 1416 (1975)

- Since |k²| is large, coupling at q-g vertex is small
 → use lowest-order perturbation theory!
- Assume wave function vanishes sufficiently fast as $|k^2| \rightarrow \infty$ <u>and unperturbed</u> wave function dominated by 3-quark Fock component with $SU(2) \times SU(3)$ symmetry

- If spectator "diquark" spins are anti-aligned (helicity of struck quark = helicity of proton)
 - → can exchange <u>transverse</u> <u>or longitudinal</u> gluon

- If spectator "diquark" spins are aligned (helicity of struck quark ≠ helicity of proton)
 - \rightarrow can exchange *only* <u>longitudinal</u> gluon
- Coupling of (large- k^2) longitudinal gluon to (small- p^2) quark is suppressed by $(p^2/k^2)^{1/2} \sim (1-x)^{1/2}$ w.r.t. transverse

$$\rightarrow q^{\downarrow} \sim (1-x)^2 q^{\uparrow} \sim (1-x)^5$$

- Phenomenological consequences of $S_z = 0$ qq dominance* (dominance of helicity-1/2 photoproduction cross section)
 - \rightarrow assuming unperturbed SU(6) wave function

•
$$\frac{d}{u} \rightarrow \frac{1}{5}$$
 $\frac{F_2^n}{F_2^p} \rightarrow \frac{3}{7}$

•
$$\frac{\Delta u}{u} \rightarrow 1$$
 $A_1^p \rightarrow 1$
 $\frac{\Delta d}{d} \rightarrow 1$ $A_1^n \rightarrow 1$

 \rightarrow dramatically different predictions for $\Delta d/d$ *cf.* nonperturbative models Role of orbital angular momentum

- Above results assume quarks in lowest Fock state are in relative *s*-wave
 - → higher Fock states and nonzero quark OAM will in general introduce additional suppression in (1-x)
- BUT nonzero OAM can provide logarithmic enhancement of *helicity-flip* amplitudes!
 - → quark OAM modifies asymptotic behavior of nucleon's Pauli form factor

$$F_2(Q^2) \sim \log^2(Q^2/\Lambda^2) \frac{1}{Q^6}$$

Belitsky, Ji, Yuan PRL **91**, 092003 (2003)

 \rightarrow consistent with surprising Q^2 dependence of proton's G_E/G_M form factor ratio

Role of orbital angular momentum

- For $L_z = 1$ Fock state, expand hard scattering amplitude in powers of k_{\perp} ("collinear expansion")
 - → logarithmic singularities arise when integrating over longitudinal momentum fractions x_i of soft quarks

→ leads to additional $\log^2(1-x)$ enhancement of q^{\downarrow} $q^{\downarrow} \sim (1-x)^5 \log^2(1-x)$

Avakian, Brodsky, Deur, Yuan, PRL 99, 082001 (2007)

(similar contributions to positive helicity q^{\uparrow} are power-suppressed)

Role of orbital angular momentum

■ k_{\perp} -odd transverse momentum dependent (TMD) distributions (vanish after k_{\perp} integration)

 \rightarrow arise from *interference* between $L_z = 0$ and $L_z = 1$ states

■ *T*-<u>even</u> TMDs

 \rightarrow g_{1T} (longitudinally polarized q in a transversely polarized N) h_{1L} (transversely polarized q in a longitudinally polarized N)

■ *T*-<u>odd</u> TMDs

→ f_{1T}^{\perp} (unpolarized q in a transversely polarized N – "Sivers") h_1^{\perp} (transversely polarized q in an unpolarized N – "Boer-Mulders")

• Each behaves in $x \rightarrow 1$ limit as TMD $\sim (1 - x)^4$

Brodsky, Yuan PRD **74**, 094018 (2006)

Power counting rule constraints used in exploratory fit to limited set of inclusive DIS spin structure function data

$$q^{\uparrow} = x^{\alpha} \left[A(1-x)^3 + B(1-x)^4 \right]$$

 $q^{\downarrow} = x^{\alpha} \left[C(1-x)^5 + D(1-x)^6 \right]$

Brodsky, Burkardt, Schmidt NPB 441, 197 (1995)

Power counting rule constraints used in exploratory fit to limited set of inclusive DIS spin structure function data

• Determining $x \rightarrow 1$ behavior experimentally is problematic

→ simple $x^{\alpha}(1-x)^{\beta}$ parametrizations inadequate for describing *high-precision* data, and global fits typically require more complicated x dependence, *e.g.*

$$q \sim x^{\alpha}(1-x)^{\beta} \left(1+\gamma\sqrt{x}+\eta x\right)$$

 \rightarrow recent global fits of spin-dependent PDFs find (at $Q^2 \sim 5 \text{ GeV}^2$)

 $\beta \approx 3.3 \ (\Delta u_V), \ 3.9 \ (\Delta d_V)$ de Florian et al. PRD 80, 034030 (2009)

but with $\gamma, \eta \sim \mathcal{O}(10\text{--}100)$

Challenge to perform constrained *global* fit to all DIS, SIDIS & $\vec{p} \, \vec{p}$ scattering data

Determining $x \rightarrow 1$ behavior experimentally is problematic

→ simple $x^{\alpha}(1-x)^{\beta}$ parametrizations inadequate for describing *high-precision* data, and global fits typically require more complicated x dependence, *e.g.*

$$q \sim x^{\alpha}(1-x)^{\beta} \left(1+\gamma\sqrt{x}+\eta x\right)$$

 \rightarrow recent global fits of spin-dependent PDFs find (at $Q^2 \sim 5 \text{ GeV}^2$)

 $\beta \approx 3.3 \ (\Delta u_V), \ 4.1 \ (\Delta d_V)$ Leader, Sidorov, Stamenov PRD 82, 114018 (2010)

but with $\gamma, \eta \sim \mathcal{O}(10\text{--}100)$

Challenge to perform constrained *global* fit to all DIS, SIDIS & $\vec{p} \, \vec{p}$ scattering data

• Determining $x \rightarrow 1$ behavior experimentally is problematic

→ simple $x^{\alpha}(1-x)^{\beta}$ parametrizations inadequate for describing *high-precision* data, and global fits typically require more complicated x dependence, *e.g.*

$$q \sim x^{\alpha}(1-x)^{\beta} \left(1+\gamma\sqrt{x}+\eta x\right)$$

 \rightarrow recent global fits of spin-dependent PDFs find (at $Q^2 \sim 5 \text{ GeV}^2$)

 $\beta \approx 3.0 \ (\Delta u_V), \ 4.1 \ (\Delta d_V)$ Bluemlein, Boettcher NPB 841, 205 (2010)

but with $\gamma, \eta \sim \mathcal{O}(10\text{--}100)$

Challenge to perform constrained *global* fit to all DIS, SIDIS & $\vec{p} \, \vec{p}$ scattering data

- Challenges for large-x PDF analysis
 - \rightarrow at fixed Q^2 , increasing x corresponds to decreasing W
 - eventually run into nucleon *resonance* region as $x \rightarrow 1$
 - \rightarrow subleading $1/Q^2$ corrections (target mass, higher twists)
 - \rightarrow nuclear corrections in extraction of *neutron* information from nuclear (deuterium,³He) data
- New "JAM" (JLab Angular Momentum) global PDF analysis* dedicated to describing large-x, moderate-Q² region
 - \rightarrow preliminary results expected this summer
 - → global spin asymmetry / structure function database currently being compiled

^{*} JAM collaboration: P. Jimenez-Delgado, A. Accardi, WM (theory) + Halls A, B, C (expt.) <u>http://www.jlab.org/jam</u>

Nuclear corrections to spin structure functions

Nuclear structure functions

- Incoherent scattering from nucleons in nucleus $(x \gg 0)$ + expansion in powers of p^2/M^2 & binding energy
 - \rightarrow Weak Binding Approximation ("WBA")

$$xg_{i}^{A}(x,Q^{2}) = \sum_{N} \int \frac{dy}{y} f_{ij}^{N}(y,\gamma) xg_{j}^{N}(x/y,Q^{2}) \qquad i,j = 1,2$$

photon "velocity"
$$\gamma = |\mathbf{q}|/q_0 = \sqrt{1 + 4M^2 x^2/Q^2}$$

light-cone momentum fraction $y = \frac{p \cdot q}{P \cdot q} = \frac{p_0 + \gamma p_z}{M}$

→ spin-dependent smearing functions

$$f_{ij}^{N}(y,\gamma) = \int \frac{d^{3}\mathbf{p}}{(2\pi)^{3}} D_{ij}^{N}(\varepsilon,\mathbf{p},\gamma) \,\delta\Big(y-1-\frac{\varepsilon+\gamma p_{z}}{M}\Big)$$

For ³He, nuclear functions D_{ij} given in terms of components of ³He spectral function

$$\begin{split} D_{11} &= \mathcal{F}_1 + \frac{3 - \gamma^2}{6\gamma^2} (3\hat{p}_z^2 - 1)\mathcal{F}_2 + \frac{p_z}{3\gamma} (3\mathcal{F}_1 + 2\mathcal{F}_2) \\ &+ \frac{\mathbf{p}^2}{M^2} \frac{(3 - \gamma^2)\hat{p}_z^2 - 1 - \gamma^2}{12\gamma^2} (3\mathcal{F}_1 - \mathcal{F}_2) \quad etc. \end{split}$$

where spectral function is defined as

$$\mathcal{P}(\varepsilon, \mathbf{p}, \mathbf{S}) = \frac{1}{2} \left[\mathcal{F}_0 I + \mathcal{F}_1 \sigma \cdot \mathbf{S} + \mathcal{F}_2 \left(\hat{p}_i \hat{p}_j - \frac{1}{3} \delta_{ij} \right) S_i \sigma_j \right]$$

For ³He, nuclear functions D_{ij} given in terms of components of ³He spectral function

$$\begin{split} D_{11} &= \mathcal{F}_1 + \frac{3 - \gamma^2}{6\gamma^2} (3\hat{p}_z^2 - 1)\mathcal{F}_2 + \frac{p_z}{3\gamma} (3\mathcal{F}_1 + 2\mathcal{F}_2) \\ &+ \frac{\mathbf{p}^2}{M^2} \frac{(3 - \gamma^2)\hat{p}_z^2 - 1 - \gamma^2}{12\gamma^2} (3\mathcal{F}_1 - \mathcal{F}_2) \quad etc. \end{split}$$

where spectral function is defined as

$$\mathcal{P}(\varepsilon, \mathbf{p}, \mathbf{S}) = \frac{1}{2} \begin{bmatrix} \mathcal{F}_0 I + \mathcal{F}_1 \sigma \cdot \mathbf{S} + \mathcal{F}_2 (\hat{p}_i \hat{p}_j - \frac{1}{3} \delta_{ij}) S_i \sigma_j \end{bmatrix}$$
spin-averaged spin-dependent

Proton and neutron contributions differ qualitatively

$$\mathcal{F}_{1,2}^{p} = \mathcal{F}_{1,2}^{p(\text{cont})}(E, \mathbf{p}) + \mathcal{F}_{1,2}^{p(d)}(\mathbf{p}) \,\delta(E + \varepsilon_{^3\text{He}} - \varepsilon_d)$$
$$\mathcal{F}_{1,2}^{n} = \mathcal{F}_{1,2}^{n(\text{cont})}(E, \mathbf{p})$$
$$\overset{\text{deuteron pole contributes}}{\sim 60\% \text{ to normalization!}}$$

Normalizations

$$\int \frac{d^3 \mathbf{p}}{(2\pi)^3} \, \mathcal{F}_0^{p(n)} = 2 \, (1)$$
$$\int \frac{d^3 \mathbf{p}}{(2\pi)^3} \, \mathcal{F}_1^N = \langle \sigma_z \rangle^N$$
$$\int \frac{d^3 \mathbf{p}}{(2\pi)^3} \, \mathcal{F}_2^N = \frac{9}{2} \langle T_{zi} \sigma_i \rangle^N$$

number sum rules

average N polarization

tensor polarization

Proton and neutron contributions differ qualitatively

$$\mathcal{F}_{1,2}^{p} = \mathcal{F}_{1,2}^{p(\text{cont})}(E, \mathbf{p}) + \mathcal{F}_{1,2}^{p(d)}(\mathbf{p}) \,\delta(E + \varepsilon_{^3\text{He}} - \varepsilon_d)$$
$$\mathcal{F}_{1,2}^{n} = \mathcal{F}_{1,2}^{n(\text{cont})}(E, \mathbf{p})$$
$$\overset{\text{deuteron pole contributes}}{\sim 60\% \text{ to normalization!}}$$

Nucleon polarizations

$$\langle \sigma_z \rangle^p = -\frac{2}{3} (P_D - P_{S'}) \approx (-0.04) - (-0.06)$$

 $\langle \sigma_z \rangle^n = P_S - \frac{1}{3} (P_D - P_{S'}) \approx 0.86 - 0.89$

Smearing functions

n

Kulagin, WM, PRC 78, 065203 (2008)

 \rightarrow effectively more smearing for larger x or lower Q^2

Smearing functions

n

Kulagin, WM, PRC 78, 065203 (2008)

 \rightarrow diagonal smearing functions \gg off-diagonal

Smearing functions

p

 \rightarrow proton smearing functions \ll neutron

significant smearing, especially in resonance region

nuclear wave function model dependence (KPSV¹, SS²) not significant

¹ *Kievsky, Pace, Salme, Viviani, PRC* 56, 64 (1997)

2 Schulze, Sauer, PRC 48, 38 (1993)

Effective polarizations

$$egin{aligned} &f_{ii}^N(y,\gamma) \ o \ \langle \sigma_z
angle^N \ \delta(y-1) \end{aligned}$$
 (zero width)
 $&f_{i
eq j}^N(y,\gamma) \ o \ 0 \end{aligned}$ (no off-diagonal)

 \rightarrow assumes nuclear corrections independent of x and Q^2

$$g_1^{^{3}\mathrm{He}} \rightarrow \langle \sigma_z \rangle^p g_1^p + \langle \sigma_z \rangle^n g_1^n$$

 $g_2^{^{3}\mathrm{He}} \rightarrow \langle \sigma_z \rangle^p g_2^p + \langle \sigma_z \rangle^n g_2^n$

 significant differences between "effective polarizations" and full results, especially at low W

- At large x, correct treatment of nuclear corrections essential for extraction of free-n information from ³He
 - → difficult to observe $\log^2(1-x)$ enhancement of q^{\downarrow} predicted from $L_{\tau}=1$ component of wave function

Summary

- New JLab 12 GeV measurements of $A_1^{^{3}\text{He}}$ will provide vital information on $\Delta d/d$ at $x \rightarrow 1$
 - \rightarrow test applicability of pQCD *vs*. nonperturbative models, and role of OAM
- Nuclear effects in ³He important at large x
 - → "effective polarization" method insufficient for $x \gtrsim 0.6$, and especially low W (could distort information extracted on $\Delta d/d$)
- New "JAM" global analysis of spin-dependent PDFs dedicated to large-x, moderate-Q² region
 - → initial focus on helicity PDFs; later expand scope to TMDs (first results soon)