North Carolina State University February 1, 2011

Weak charge of the proton: loop corrections to parity-violating electron scattering

Wally Melnitchouk

collaborators: P. Blunden, A. Sibirtsev, A. Thomas, J. Tjon

Outline

Parity-violating elastic *ep* scattering (PVES)

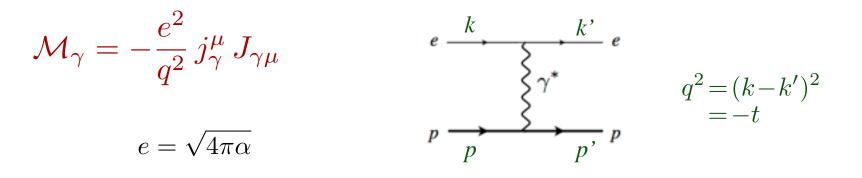
 → strange form factors of the proton

- Two-boson exchange corrections
 - $\rightarrow \gamma Z$ box diagrams

- Weak charge of the proton Q_W^p
 - → dispersive corrections for JLab's "Qweak" experiment

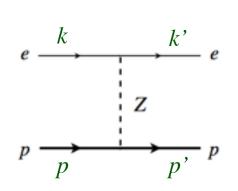
Parity-violating elastic ep scattering

• Two linear combinations of $G^{u,d,s}$:


$$G^{\gamma p} = \frac{2}{3}G^u - \frac{1}{3}G^d - \frac{1}{3}G^s$$
$$G^{\gamma n} = \frac{2}{3}G^d - \frac{1}{3}G^u - \frac{1}{3}G^s$$

Third combination from PVES:

$$\begin{aligned} G^{Zp} &= g^u_V G^u + g^d_V G^d + g^s_V G^s \\ g^u_V &= \frac{1}{2} - \frac{4}{3} \sin^2 \theta_W \\ g^{d,s}_V &= -\frac{1}{2} + \frac{2}{3} \sin^2 \theta_W \end{aligned}$$


Note: PDG definition (factor 1/2 cf. nuclear physics definition)!

Electromagnetic Born amplitude

Weak neutral current Born amplitude

$$\mathcal{M}_Z = -\frac{g^2}{(4\cos\theta_W)^2} \frac{1}{M_Z^2 - q^2} j_Z^\mu J_{Z\mu}$$
$$\approx -\frac{G_F}{2\sqrt{2}} j_Z^\mu J_{Z\mu}$$
$$g = \frac{e}{\sin^2\theta_W}$$
$$G_F = \frac{\pi\alpha}{\sqrt{2}M_Z^2 \sin^2\theta_W \cos^2\theta_W}$$

Electroweak lepton currents

$$j^{\mu}_{\gamma} = \bar{u}_e(k')\gamma^{\mu}u_e(k)$$

$$j_{Z}^{\mu} = \bar{u}_{e}(k')(g_{V}^{e}\gamma^{\mu} + g_{A}^{e}\gamma_{5})u_{e}(k)$$
$$g_{A}^{e} = -\frac{1}{2}, \ g_{V}^{e} = -\frac{1}{2}(1 - 4\sin^{2}\theta_{W})$$

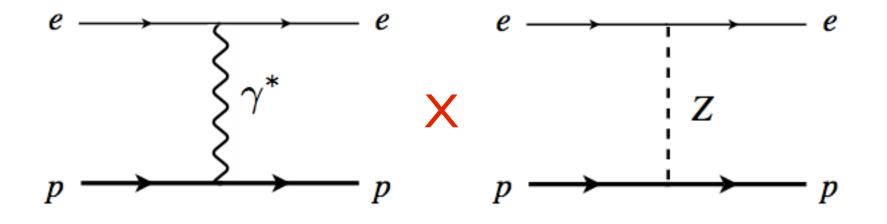
Hadronic currents

$$J^{\mu}_{\gamma,Z} = \bar{u}_N(p') \Gamma^{\mu}_{\gamma,Z} u_N(p)$$

$$\Gamma^{\mu}_{\gamma} = \gamma^{\mu} F_1^{\gamma} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} F_2^{\gamma}$$

$$\Gamma^{\mu}_Z = \gamma^{\mu} F_1^Z + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} F_2^Z + \gamma^{\mu}\gamma_5 G_A^Z$$

Born cross section


$$\frac{d\sigma}{d\Omega} = \left(\frac{\alpha}{4MQ^2}\frac{E'}{E}\right)^2 |\mathcal{M}|^2$$

where total squared amplitude is

• Left-right polarization asymmetry in $\vec{e} \ p \rightarrow e \ p$ scattering

$$A_{\rm PV} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = -\left(\frac{G_F Q^2}{4\sqrt{2}\alpha}\right) \left(A_V + A_A + A_s\right)$$

measure interference between e.m. and weak currents

Born (tree) level

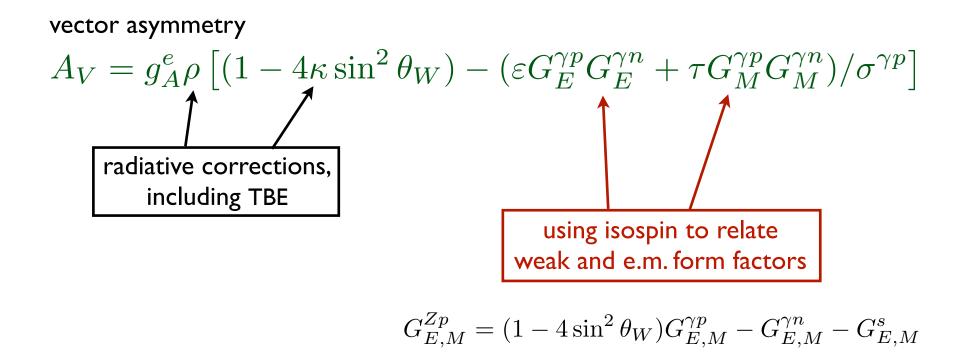
• Left-right polarization asymmetry in $\vec{e} \ p \rightarrow e \ p$ scattering

$$A_{\rm PV} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = -\left(\frac{G_F Q^2}{4\sqrt{2}\alpha}\right) \left(A_V + A_A + A_s\right)$$

measure interference between e.m. and weak currents

vector asymmetry $A_V = g_A^e \rho \left[\left(1 - 4\kappa \sin^2 \theta_W \right) - \left(\varepsilon G_E^{\gamma p} G_E^{\gamma n} + \tau G_M^{\gamma p} G_M^{\gamma n} \right) / \sigma^{\gamma p} \right]$

axial vector asymmetry $A_A = g_V^e \sqrt{\tau (1+\tau)(1-\varepsilon^2)} \ \widetilde{G}_A^{Zp} G_M^{\gamma p} / \sigma^{\gamma p}$


strange asymmetry

$$A_s = -g_A^e \rho \left(\varepsilon G_E^{\gamma p} G_E^s + \tau G_M^{\gamma p} G_M^s \right) / \sigma^{\gamma p}$$

• Left-right polarization asymmetry in $\vec{e} \ p \rightarrow e \ p$ scattering

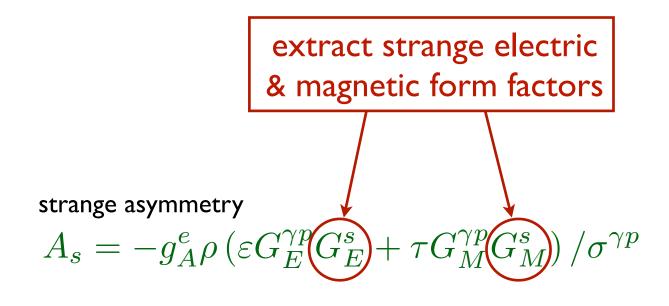
$$A_{\rm PV} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = -\left(\frac{G_F Q^2}{4\sqrt{2}\alpha}\right) \left(A_V + A_A + A_s\right)$$

measure interference between e.m. and weak currents

• Left-right polarization asymmetry in $\vec{e} \ p \rightarrow e \ p$ scattering

$$A_{\rm PV} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = -\left(\frac{G_F Q^2}{4\sqrt{2}\alpha}\right) \left(A_V + A_A + A_s\right)$$

→ measure interference between e.m. and weak currents

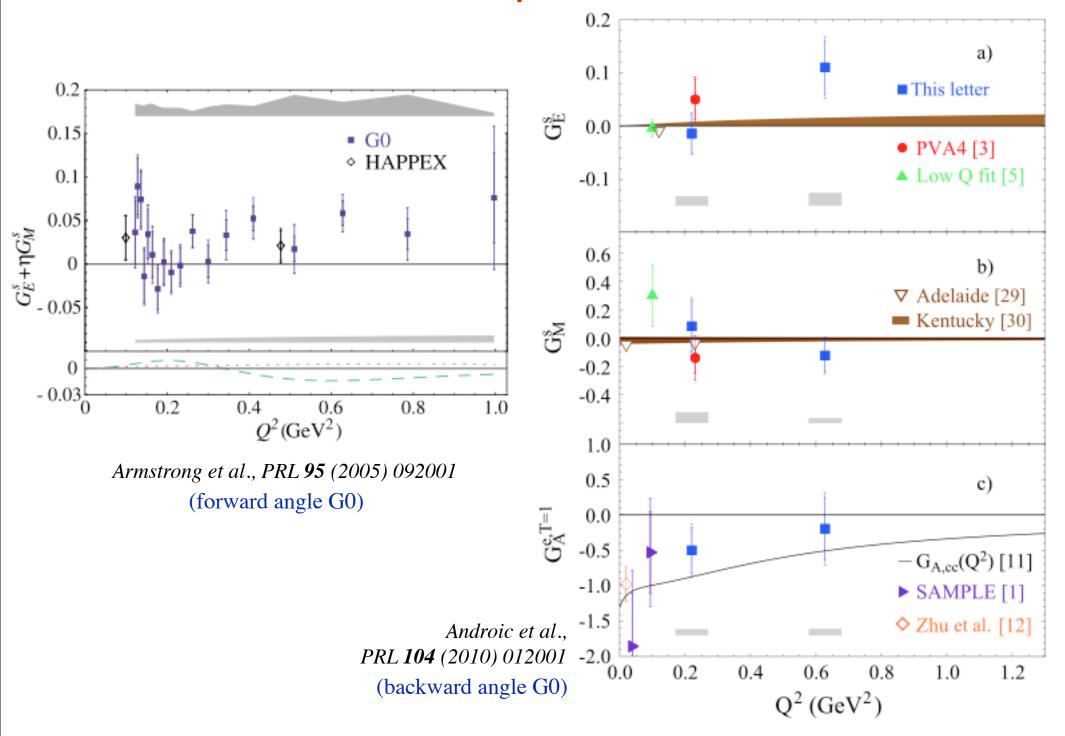

axial vector asymmetry

$$A_A = g_V^e \sqrt{\tau(1+\tau)(1-\varepsilon^2)} \quad \widetilde{G}_A^{Zp} G_M^{\gamma p} / \sigma^{\gamma p}$$
insensitive to axial contribution
at forward angles $(\varepsilon \to 1)$

• Left-right polarization asymmetry in $\vec{e} \ p \rightarrow e \ p$ scattering

$$A_{\rm PV} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = -\left(\frac{G_F Q^2}{4\sqrt{2}\alpha}\right) \left(A_V + A_A + A_s\right)$$

→ measure interference between e.m. and weak currents


PVES experiments

Q^2	η_0	η^p_A	η^n_A	η_E	η_M	$A^{\rm phys}$	δA	$\delta A_{\rm cor}$	$ ilde{G}^p_A$	$ ilde{G}^n_A$	G_E^s	G^s_M	χ^2	C.L.
0.038	-2.13	0.46	-0.30	1.16	0.28	-3.51	0.81	0					•••	
0.091	-7.02	1.04	-0.65	1.63	0.77	-7.77	1.03	0					•••	
0.091	-7.50	0	0	-20.2	0	-6.72	0.87	0					•••	
0.099	-1.40	0.04	0	9.55	0.76	-1.14	0.25	0					•••	
0.1	-5.47	1.58	0	2.11	3.46	-5.61	1.11	0	-2.6(21)	-0.6(30)	-0.044(47)	1.00(75)	1.0	63
0.108	-1.80	0.26	0	10.1	1.05	-1.36	0.32	0	-2.0(20)	0.3(29)	-0.025(43)	0.87(74)	1.0	71
0.122	-1.90	0.06	0	12.0	1.18	-1.51	0.49	0.18	-1.8(19)	0.5(27)	-0.023(43)	0.79(69)	0.7	76
0.128	-2.04	0.06	0	12.6	1.30	-0.97	0.46	0.17	-2.4(18)	-0.1(26)	-0.027(42)	0.99(65)	0.7	96
0.136	-2.24	0.07	0	13.5	1.48	-1.30	0.45	0.17	-2.5(17)	-0.2(26)	-0.028(42)	1.03(63)	0.6	99
0.144	-2.44	0.08	0	14.3	1.67	-2.71	0.47	0.18	-1.6(16)	0.8(25)	-0.021(42)	0.71(61)	1.4	91
0.153	-2.68	0.09	0	15.3	1.89	-2.22	0.51	0.21	-1.4(16)	1.0(25)	-0.020(42)	0.66(60)	1.2	91
0.164	-2.97	0.11	0	16.5	2.19	-2.88	0.54	0.23	-1.1(16)	1.3(25)	-0.018(42)	0.55(60)	1.2	83
0.177	-3.34	0.13	0	18.0	2.58	-3.95	0.50	0.20	-0.4(16)	2.1(24)	-0.012(42)	0.32(59)	1.7	36
0.192	-3.78	0.15	0	19.7	3.07	-3.85	0.53	0.19	-0.2(15)	2.3(24)	-0.010(42)	0.24(58)	1.6	18
0.210	-4.34	0.19	0	21.8	3.72	-4.68	0.54	0.21	0.1(15)	2.7(24)	-0.007(42)	0.14(57)	1.6	1
0.230	-5.66	0.89	0	22.6	5.07	-5.44	0.60	0	0.0(15)	2.5(24)	-0.007(42)	0.14(57)	1.5	1
0.232	-5.07	0.23	0	24.4	4.61	-5.27	0.59	0.23	0.2(14)	2.8(23)	-0.005(42)	0.09(57)	1.4	3
0.262	-6.12	0.31	0	28.0	5.99	-5.26	0.53	0.17	-0.2(14)	2.3(23)	-0.010(41)	0.19(56)	1.4	18
0.299	-7.51	0.42	0	32.6	8.00	-7.72	0.80	0.35	0.0(14)	2.6(23)	-0.006(41)	0.12(55)	1.3	5
0.344	-9.35	0.57	0	38.4	10.9	-8.40	1.09	0.52	0.0(14)	2.5(22)	-0.008(41)	0.15(54)	1.2	11
0.410	-12.28	0.87	0	47.3	16.1	-10.25	1.11	0.55	-0.4(13)	2.1(22)	-0.015(40)	0.27(53)	1.2	44
0.477	-15.46	1.12	0	56.9	22.6	-15.05	1.13	0	0.1(12)	2.7(21)	-0.004(38)	0.10(49)	1.2	28
	0.038 0.091 0.091 0.099 0.1 0.108 0.122 0.128 0.128 0.128 0.128 0.128 0.122 0.128 0.123 0.144 0.153 0.164 0.177 0.192 0.210 0.230 0.232 0.262 0.299 0.344 0.410	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 $Q^2 \sim 0.04 - 0.5 \text{ GeV}^2$

Young et al., PRL 97 (2006) 102002

PVES experiments

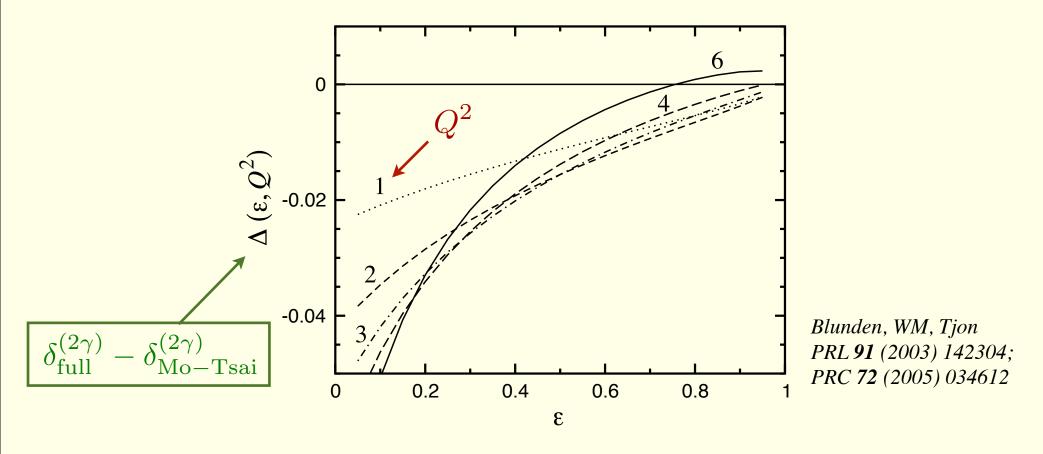
PVES global analysis

- -> strange form factors <u>small</u> (analyses compatible)
- \rightarrow how important are higher order (e.g. γZ) corrections?

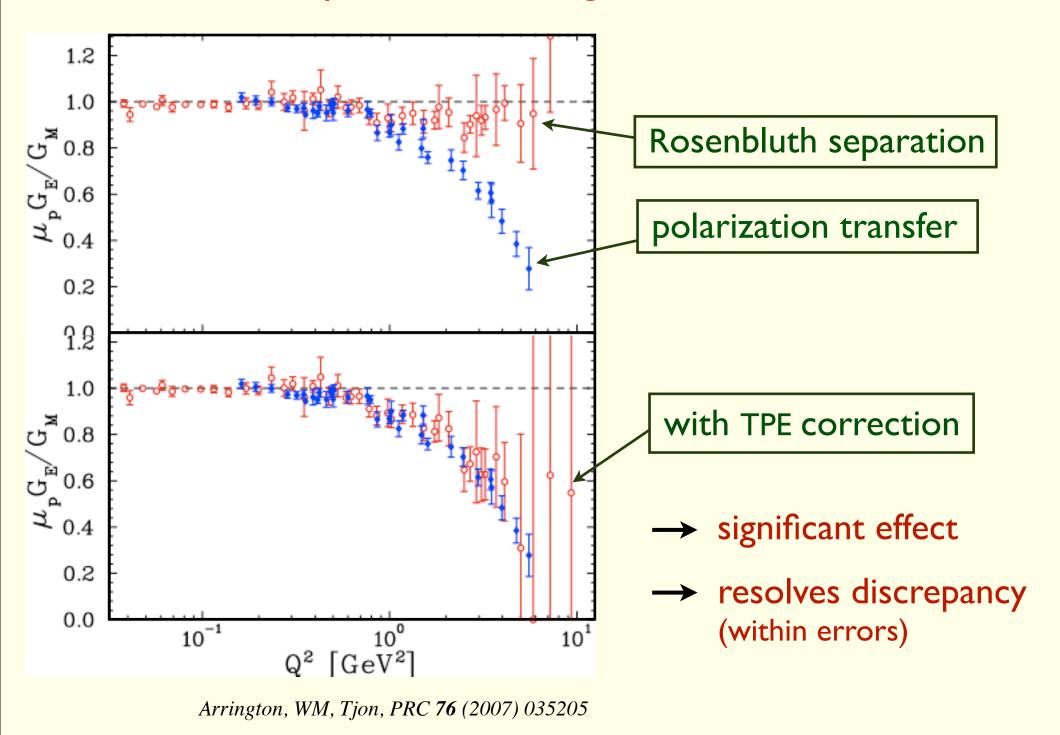
calculation uses same framework as that for computing two-photon exchange corrections to e.m. form factors

$$\mathcal{M}_{\gamma\gamma} = e^4 \int \frac{d^4l}{(2\pi)^4} \frac{N(l)}{D(l)} + \text{crossed box}$$

$$\begin{split} N(l) &= \bar{u}(k')\gamma_{\mu}(\not\!\!\!k - \not\!\!\!/ + m_e)\gamma_{\nu}u(k) \ \bar{u}(p')\Gamma^{\mu}(q-l)(\not\!\!\!p + \not\!\!\!/ + M)\Gamma^{\nu}(l)u(p) \\ D(l) &= (l^2 - \lambda^2)((l-q)^2 - \lambda^2)((k-l)^2 - m_e^2)((p+l)^2 - M^2) \\ \lambda(\to 0) &= \text{infrared regulator} \end{split}$$

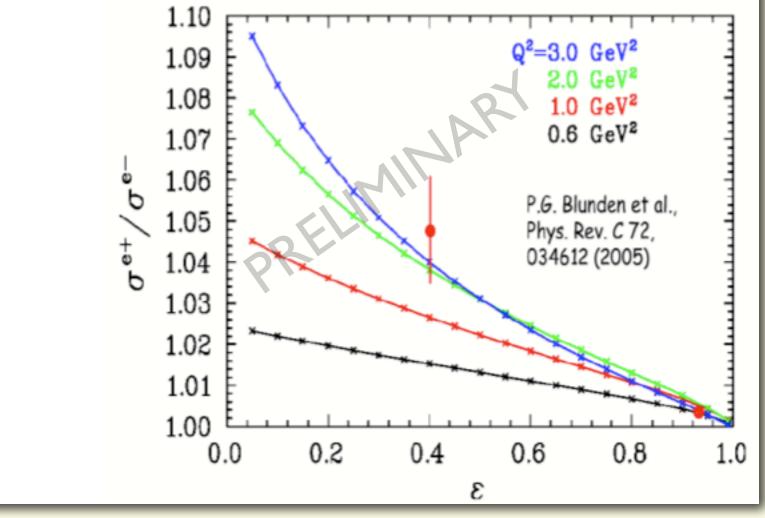

- "
 "exact" evaluation of integrals including form factors
 (Veltman-Passarino functions)
 - → cf. soft photon approximation (used in most data analyses!) which assumes pole dominance of TPE amplitude & neglects nucleon structure $N(l) \approx N(0)$

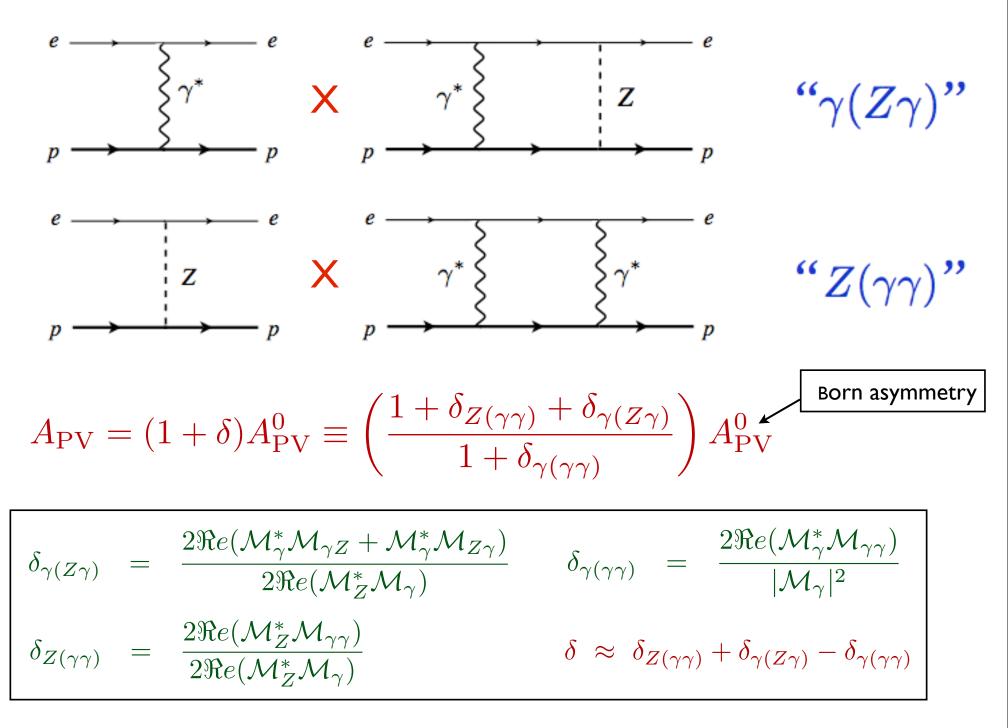
Mo, Tsai (1969)


$$\mathcal{M}_{\gamma\gamma} = e^4 \int \frac{d^4l}{(2\pi)^4} \frac{N(l)}{D(l)} + \text{crossed box}$$

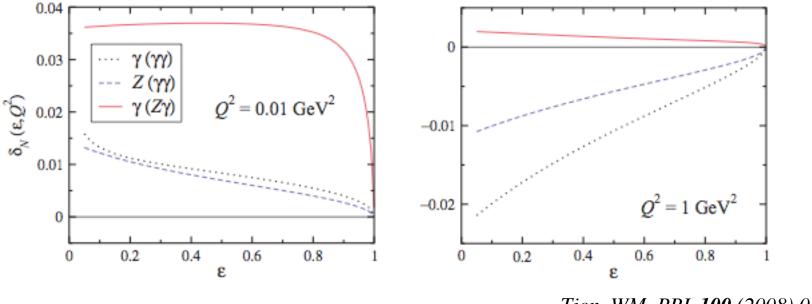
$$\begin{split} N(l) &= \bar{u}(k')\gamma_{\mu}(\not\!\!\!k - \not\!\!\!/ + m_e)\gamma_{\nu}u(k) \ \bar{u}(p')\Gamma^{\mu}(q-l)(\not\!\!\!p + \not\!\!\!/ + M)\Gamma^{\nu}(l)u(p) \\ D(l) &= (l^2 - \lambda^2)((l-q)^2 - \lambda^2)((k-l)^2 - m_e^2)((p+l)^2 - M^2) \\ \lambda(\to 0) &= \text{infrared regulator} \end{split}$$

calculation uses same framework as that for computing two-photon exchange corrections to e.m. form factors

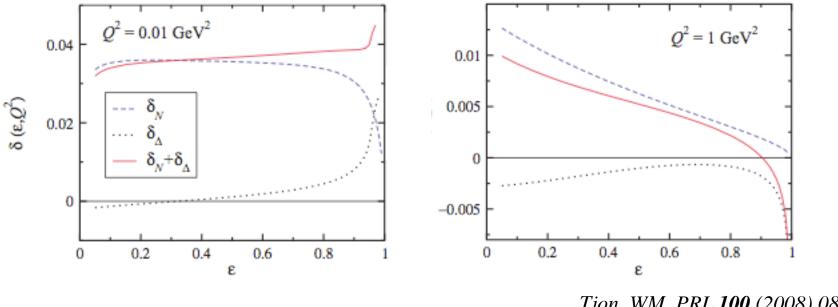

 \rightarrow few % magnitude, non-linear in ε , positive slope \rightarrow does not depend strongly on vertex form factors


If 1γ (2 γ) exchange changes sign (invariant) under $e^+ \leftrightarrow e^-$

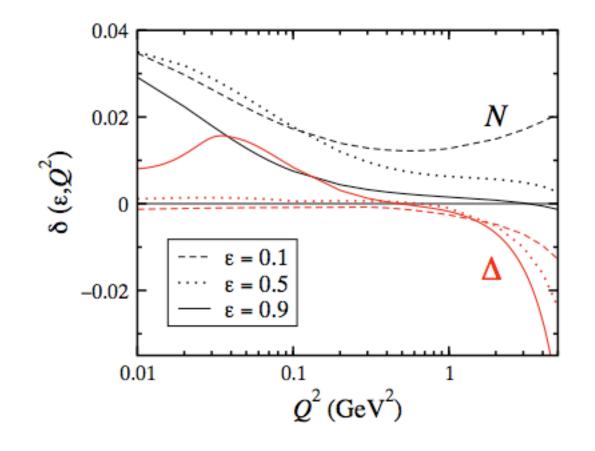
Very preliminary Novosibirsk data



Arrington, Holt et al. (2010)


nucleon intermediate states

Tjon, WM, PRL **100** (2008) 082003 *Tjon, Blunden, WM, PRC* **79** (2009) 055201


- → cancellation between $Z(\gamma\gamma)$ and $\gamma(\gamma\gamma)$ corrections, especially at low Q^2
 - \rightarrow dominated by $\gamma(Z\gamma)$ contribution

\blacksquare Δ intermediate states

Tjon, WM, PRL **100** (2008) 082003 *Tjon, Blunden, WM, PRC* **79** (2009) 055201

- \rightarrow Δ contribution small, except at very forward angles (numerators have higher powers of loop momenta)
- → Δ calculation less reliable for $\varepsilon \to 1$ (grows faster with *s* than nucleon)

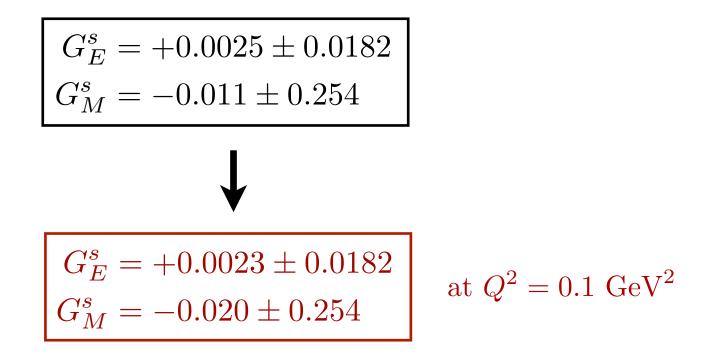
- \rightarrow ~ 2-4% correction for $Q^2 \sim 0.01-0.1 \text{ GeV}^2$
- → stronger Q^2 dependence at larger Q^2 (especially at forward angles)

TBE corrections at experimental kinematics

$Q^2 ~(\text{GeV}^2)$	θ	Expt.	δ_N	δ_{Δ}	$\delta_{N+\Delta}$	$\delta^{\rm had}_{\rm MS}$	$\delta_{\mathrm{MS}}^{\mathrm{tot}}$	
0.099	6.0°	HAPPEX [1]	0.19	-1.20	-1.01	0.45	2.42	
0.477	12.3°	HAPPEX [1]	0.13	-0.44	-0.31	0.16	0.86	ſ
0.077	6.0°	HAPPEX [3]	0.22	-1.04	-0.82	0.52	2.78	
0.1	144.0°	SAMPLE [5]	1.63	-0.09	1.54	0.06	0.33	
0.108	35.37°	PVA4 [7]	1.05	0.78	1.83	0.37	1.98	
0.23	35.31°	PVA4 [7]	0.62	0.34	0.96	0.23	1.22	
0.122	6.68°	G0 [2]	0.18	-1.06	-0.88	0.40	2.13	
0.128	6.84°	G0 [2]	0.18	-1.03	-0.85	0.39	2.07	
0.136	7.06°	G0 [2]	0.18	-0.99	-0.81	0.37	1.99	
0.144	7.27°	G0 [2]	0.17	-0.96	-0.79	0.36	1.92	
0.153	7.5°	G0 [2]	0.17	-0.92	-0.75	0.35	1.85	
0.164	7.77°	G0 [2]	0.17	-0.88	-0.71	0.33	1.77	
0.177	8.09°	G0 [2]	0.16	-0.83	-0.67	0.32	1.69	
0.192	8.43°	G0 [2]	0.16	-0.79	-0.63	0.30	1.60	
0.21	8.84°	G0 [2]	0.16	-0.73	-0.57	0.28	1.51	
0.232	9.31°	G0 [2]	0.16	-0.68	-0.52	0.26	1.41	
0.262	9.92°	G0 [2]	0.15	-0.62	-0.47	0.24	1.30	
0.299	10.63°	G0 [2]	0.15	-0.55	-0.40	0.22	1.19	
0.344	11.46°	G0 [2]	0.15	-0.48	-0.33	0.20	1.07	
0.41	12.59°	G0 [2]	0.15	-0.41	-0.26	0.18	0.95	
0.511	14.2°	G0 [2]	0.15	-0.32	-0.17	0.15	0.81	
0.631	15.98°	G0 [2]	0.15	-0.26	-0.11	0.13	0.70	
0.788	18.16°	G0 [2]	0.16	-0.23	-0.07	0.11	0.60	
0.997	20.9°	G0 [2]	0.17	-0.22	-0.05	0.10	0.51	
0.23	110.0°	G0 [4]	1.37	-0.10	1.27	0.09	0.47	
0.62	110.0°	G0 [4]	1.10	-0.15	0.95	0.07	0.35	

partial TBE corrections $(\gamma Z \text{ at } Q^2 = 0)$ need to be removed before adding new results

G0 (fwd): < 1% (negative)

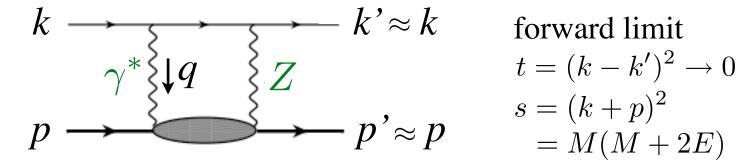

G0 (bck): ~ 1% (positive)

Tjon, Blunden, WM PRC **79** (2009) 055201

Effect on strange form factors

include TBE corrections in global analysis

 \rightarrow e.g. Young et al.


→ small (absolute) shift in strange form factors from TBE (large relative shift to G_M^s), well within experimental errors

Extraction of proton's weak charge - JLab Qweak experiment -

Correction to proton weak charge

in <u>forward</u> limit $A_{\rm PV}$ measures weak charge of proton Q_W^p

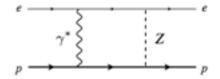
$$A_{\rm PV} \rightarrow \frac{G_F \, Q_W^p}{4\sqrt{2}\pi\alpha} t$$

= M(M + 2E)

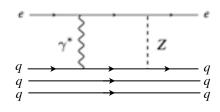
at <u>tree level</u> Q_W^p gives weak mixing angle $Q_W^p = 1 - 4\sin^2\theta_W$

Correction to proton weak charge

including higher order radiative corrections

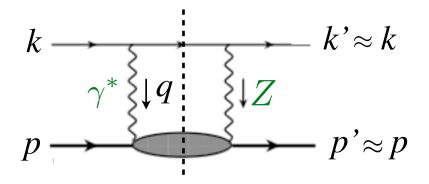

$$Q_W^p = (1 + \Delta \rho + \Delta_e)(1 - 4\sin^2 \theta_W(0) + \Delta'_e) + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z} \longleftarrow \text{box diagrams} = 0.0713 \pm 0.0008^*$$

Erler et al., PRD 72 (2005) 073003


* $\sin^2 \theta_W(0) = 0.23867(16)$

- → WW and ZZ box diagrams dominated by short distances, evaluated perturbatively

→ computed by Marciano & Sirlin as sum of two parts:


Iow-energy part approximated by *Born* contribution (elastic intermediate state)

★ high-energy part (above scale $\Lambda \sim 1 \text{ GeV}$) computed in terms of scattering from free quarks

Marciano, Sirlin, PRD 29 (1984) 75; Erler et al., PRD 68 (2003) 016006

- axial *h* correction $\square_{\gamma Z}^{A}$ dominant γZ correction in atomic parity violation at very low (zero) energy
 - repeat calculation using forward dispersion relations with realistic (structure function) input

- ★ axial *h* contribution *antisymmetric* under $E' \leftrightarrow -E'$: $\Re e \prod_{\gamma Z}^{A}(E) = \frac{2}{\pi} \int_{0}^{\infty} dE' \frac{E'}{E'^2 - E^2} \Im m \prod_{\gamma Z}^{A}(E')$
- ★ imaginary part can only grow as $\log E' / E'$

imaginary part given by interference F₃^{γZ} structure function

$$\Im m \Box_{\gamma Z}^{A}(E) = \frac{\alpha}{(s - M^{2})^{2}} \int_{W_{\pi}^{2}}^{s} dW^{2} \int_{0}^{Q_{\max}^{2}} \frac{dQ^{2}}{1 + Q^{2}/M_{Z}^{2}} \times \frac{g_{V}^{e}}{2g_{A}^{e}} \left(\frac{4ME}{W^{2} - M^{2} + Q^{2}} - 1\right) F_{3}^{\gamma Z}$$
with $g_{A}^{e} = -\frac{1}{2}, \ g_{V}^{e} = -\frac{1}{2}(1 - 4\hat{s}^{2})$

$$\hat{s}^{2} = \sin^{2}\theta_{W}^{\overline{\mathrm{MS}}}(M_{Z}) = 0.23116(13)$$

- \rightarrow $F_3^{\gamma Z}$ structure function
 - ★ <u>elastic</u> part given by $G_M^p G_A^Z$
 - ★ resonance part from parametrization of ν scattering data (Lalakulich-Paschos)
 - ★ <u>DIS</u> part dominated by leading twist PDFs at small x (MSTW, CTEQ, Alekhin)

- change integration variable $W^2 \to x$ and switch order of integration

 $\mathcal{I}m \, \Box_{\gamma Z}^{A} = (1 - 4\hat{s}^{2}) \frac{\alpha}{2ME} \int_{0}^{2ME} \frac{dQ^{2}}{1 + Q^{2}/M_{Z}^{2}} \int_{x_{\min}}^{1} \frac{dx}{x} \left(1 - \frac{y}{2}\right) F_{3}^{\gamma Z}$

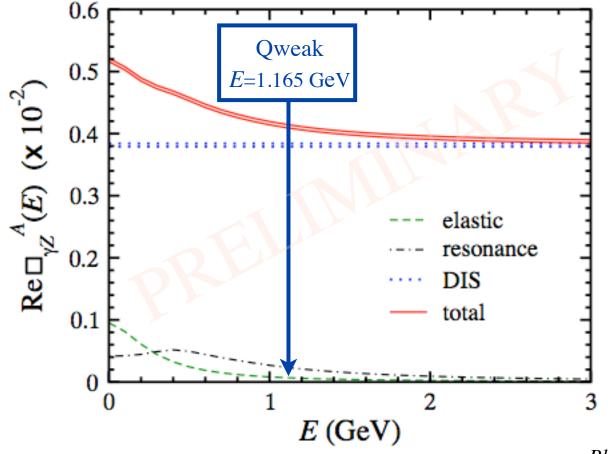
where
$$y = (W^2 - M^2 + Q^2)/2ME$$

→ in DIS region ($Q^2 \gtrsim 1 \text{ GeV}^2$), expand integrand in $1/Q^2$ $\mathcal{R}e \square_{\gamma Z}^{A(\text{DIS})} = (1 - 4\hat{s}^2) \frac{3\alpha}{2\pi} \int_{Q_0^2}^{\infty} \frac{dQ^2}{Q^2(1 + Q^2/M_Z^2)}$ $\times \left[M_3^{\gamma Z(1)} - \frac{2M^2}{9Q^4} (5E^2 - 3Q^2) M_3^{\gamma Z(3)} \right]$

with moments $M_3^{\gamma Z(n)}(Q^2) = \int_0^1 dx \, x^{n-1} F_3^{\gamma Z}(x,Q^2)$

structure function moments

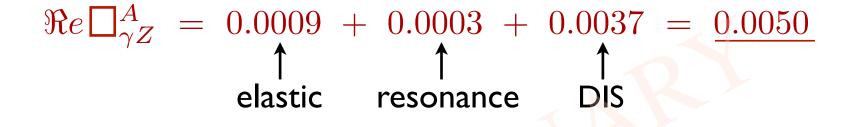
n=1
$$M_3^{\gamma Z(1)}(Q^2) = \frac{5}{3} \left(1 - \frac{\alpha_s(Q^2)}{\pi}\right)$$


 $\longrightarrow \gamma Z$ analog of Gross-Llewellyn Smith sum rule

$$\mathcal{R}e \,\Box_{\gamma Z}^{A(\text{DIS})} \approx (1 - 4\hat{s}^2) \frac{5\alpha}{2\pi} \int_{Q_0^2}^{\infty} \frac{dQ^2}{Q^2(1 + Q^2/M_Z^2)} \left(1 - \frac{\alpha_s(Q^2)}{\pi}\right)$$

precisely result from Marciano & Sirlin! (works because result depends on lowest moment of valence PDF, with model-independent normalization!)

$$\underline{n=3} \quad M_3^{\gamma Z(3)}(Q^2) = \frac{1}{3} \left(2\langle x \rangle_{u_V} + \langle x \rangle_{d_V} \right) \left(1 + \frac{5\alpha_s(Q^2)}{12\pi} \right)$$

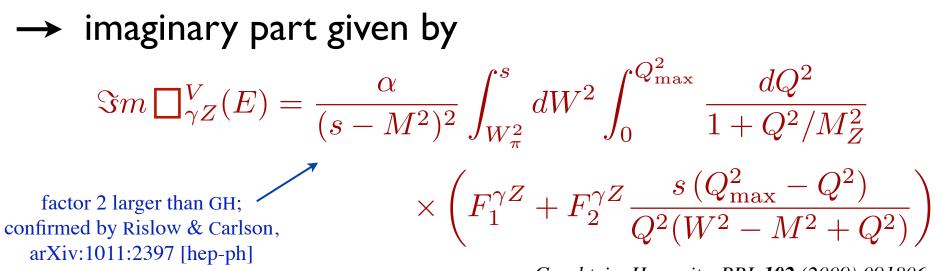

 \rightarrow related to momentum carried by valence quarks

Blunden, WM, Thomas (2011)

 \rightarrow dominated by DIS contribution (weak *E* dependence)

 \rightarrow correction at <u>*E*</u> = 0

→ correction at E = 1.165 GeV (Qweak)

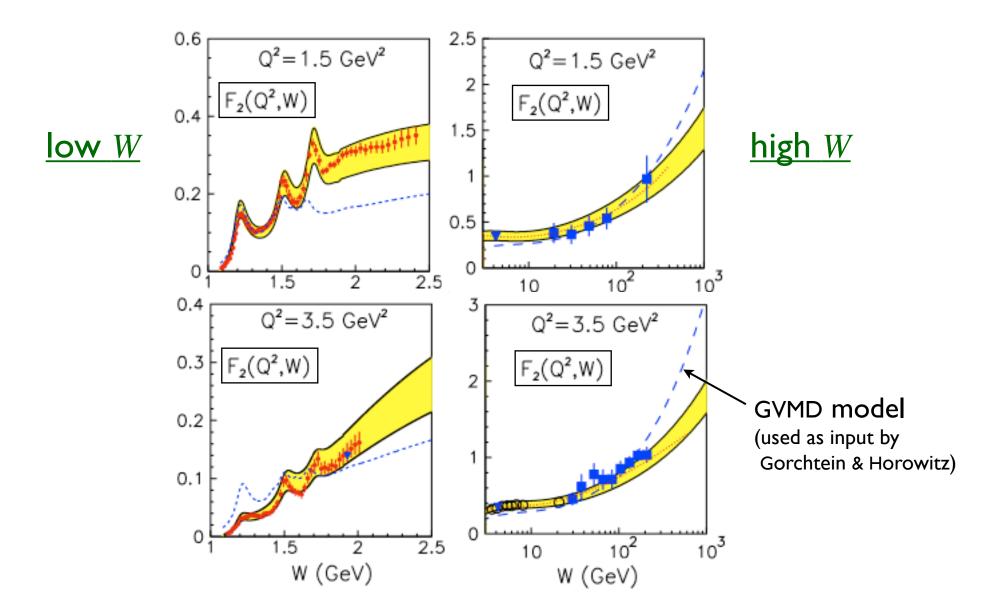

 $\Re e \square_{\gamma Z}^{A} = 0.00006 + 0.0002 + 0.0037 = 0.0039$

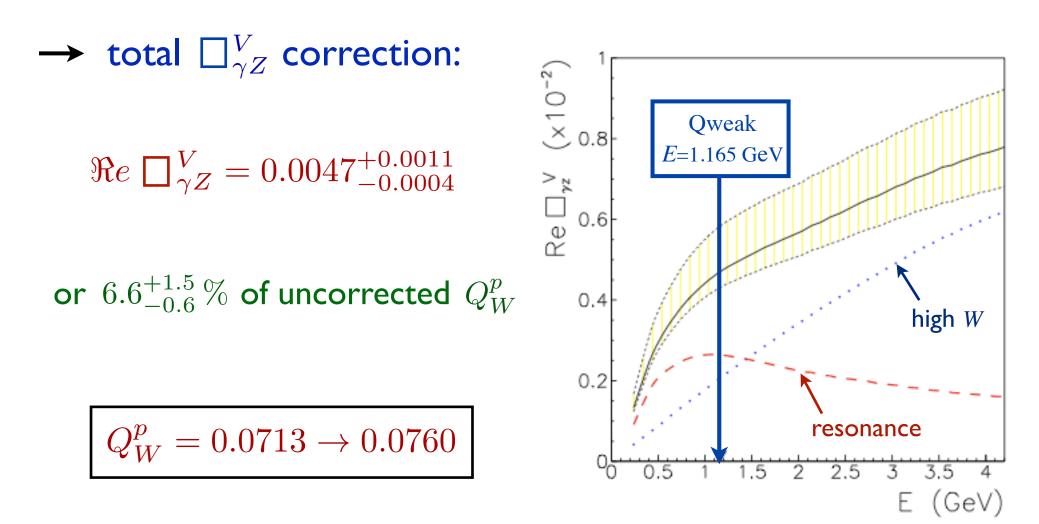
cf. MS value: $0.0048 \quad (\sim 1\% \text{ shift in } Q_W^p)$

- vector *h* correction $\square_{\gamma Z}^{V}$ vanishes at E = 0, but experiment has $E \sim 1 \text{ GeV}$ what is energy dependence?
 - \rightarrow forward dispersion relation

$$\bigstar \quad \Re e \prod_{\gamma Z}^{V}(E) = \frac{2E}{\pi} \int_0^\infty dE' \frac{1}{E'^2 - E^2} \ \Im m \prod_{\gamma Z}^{V}(E')$$

★ integration over E' < 0 corresponds to crossed-box, vector h contribution symmetric under $E' \leftrightarrow -E'$

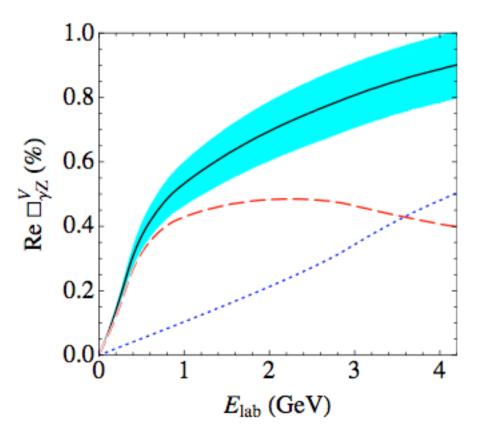



Gorchtein, Horowitz, PRL **102** (2009) 091806 Gorchtein, Horowitz, Ramsey-Musolf, arXiv:1003.4300

\rightarrow $F_{1,2}^{\gamma Z}$ structure functions

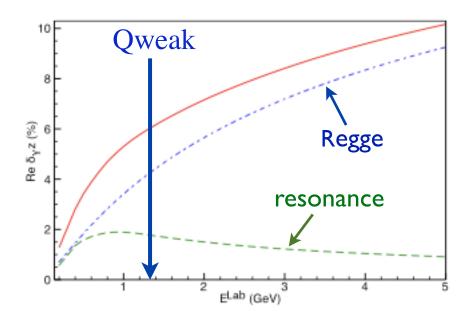
- ★ parton model for <u>DIS</u> region $F_2^{\gamma Z} = 2x \sum e_q g_V^q (q + \bar{q}) = 2x F_1^{\gamma Z}$
 - $\rightarrow F_2^{\gamma Z} \approx F_2^{\gamma}$ good approximation at *low x*
 - \rightarrow provides upper limit at *large* x $(F_2^{\gamma Z} \lesssim F_2^{\gamma})$
- ★ in <u>resonance</u> region use phenomenological input for F_2 , empirical (SLAC) fit for R
 - → for transitions to I = 3/2 states (e.g. Δ), CVC and isospin symmetry give $F_i^{\gamma Z} = (1 + Q_W^p) F_i^{\gamma}$
 - → for transitions to I = 1/2 states, SU(6) wave functions predict Z & γ transition couplings equal to a few %

compare structure function input with data



Sibirtsev, Blunden, WM, Thomas PRD 82 (2010) 013011

 \rightarrow total $\square_{\gamma Z}^{V}$ correction:


 $\Re e \prod_{\gamma Z}^{V} = 0.0057 \pm 0.0009$

 compatible with SBMT within errors

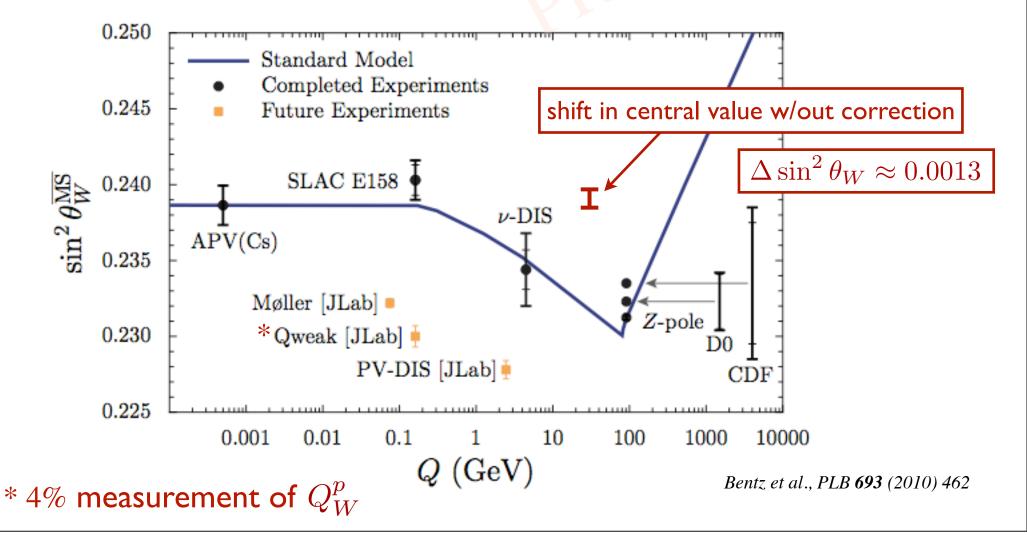
Rislow, Carlson, arXiv:1011.2397 [hep-ph]

Gorchtein, Horowitz, PRL 102 (2009) 091806

(see also Gorchtein, Horowitz, Ramsey-Musolf, AIP Conf. Proc. **1265** (2010) 328)

$$\Re e\,\delta_{\gamma Z} = \Re e\,\Box_{\gamma Z}^V/Q_W^p \approx 6\%$$

mostly from high-W ("Regge") contribution


- → our formula for Sm □^V_{γZ} factor 2 larger* ("nuclear physics" vs. "particle physics" conventions for weak charges in structure function definitions?)
- → GH omit factor (1-x) in definition of $F_{1,2}$ (~ 30% enhancement)
- → GH use $Q_W^p \sim 0.05 \ cf. \sim 0.07$ (~ 40% enhancement)
- \rightarrow numerical agreement for $\delta_{\gamma Z}^{V}$ coincidental (?)

* confirmed by Rislow/Carlson arXiv:1011.2397

Combined vector and axial *h* correction

$$Q_W^p = 0.0713 \rightarrow \approx 0.076$$

significant shift in central value, errors within projected experimental uncertainty $\Delta Q_W^p = \pm 0.003$

Summary

Two-boson exchange corrections play minor role in strange form factor extraction

 \rightarrow cf. significant role of TPE in Rosenbluth extraction of G_E^p

Dramatic effect of $\gamma(Z\gamma)$ corrections at forward angles on *proton weak charge*, $\Delta Q_W^p \sim 6\%$, *cf.* PDG

- \rightarrow would significantly shift extracted weak angle
- → better constraints from direct measurement of $F_{1,2,3}^{\gamma Z}$ (*e.g.* in PVDIS at JLab)

New formulation in terms of *moments* of structure functions

→ places on firm footing earlier derivation of Marciano/Sirlin in "free quark model"

The End