Weak charge of the proton: loop corrections to
 parity-violating electron scattering

Wally Melnitchouk
Jefferson Lab
collaborators: P. Blunden, A. Sibirtsev, A.Thomas, J.Tjon

Outline

- Parity-violating elastic ep scattering (PVES)
\rightarrow strange form factors of the proton
- Two-boson exchange corrections
$\rightarrow \gamma Z$ box diagrams
- Weak charge of the proton Q_{W}^{p}
\rightarrow dispersive corrections for JLab's "Qweak" experiment

Parity-violating elastic $e p$ scattering

Parity-violating e scattering

- Two linear combinations of $G^{u, d, s}$:

$$
\begin{aligned}
G^{\gamma p} & =\frac{2}{3} G^{u}-\frac{1}{3} G^{d}-\frac{1}{3} G^{s} \\
G^{\gamma n} & =\frac{2}{3} G^{d}-\frac{1}{3} G^{u}-\frac{1}{3} G^{s}
\end{aligned}
$$

- Third combination from PVES:

$$
\begin{aligned}
G^{Z p}=g_{V}^{u} G^{u}+g_{V}^{d} G^{d}+g_{V}^{s} G^{s} \\
g_{V}^{u}=\frac{1}{2}-\frac{4}{3} \sin ^{2} \theta_{W} \\
g_{V}^{d, s}=-\frac{1}{2}+\frac{2}{3} \sin ^{2} \theta_{W}
\end{aligned}
$$

Note: PDG definition (factor $1 / 2 c f$. nuclear physics definition)!

Parity-violating e scattering

- Electromagnetic Born amplitude

$$
\begin{array}{r}
\mathcal{M}_{\gamma}=-\frac{e^{2}}{q^{2}} j_{\gamma}^{\mu} J_{\gamma \mu} \\
e=\sqrt{4 \pi \alpha}
\end{array}
$$

$$
\begin{aligned}
q^{2} & =\left(k-k^{\prime}\right)^{2} \\
& =-t
\end{aligned}
$$

- Weak neutral current Born amplitude

$$
\begin{gathered}
\mathcal{M}_{Z}=-\frac{g^{2}}{\left(4 \cos \theta_{W}\right)^{2}} \frac{1}{M_{Z}^{2}-q^{2}} j_{Z}^{\mu} J_{Z \mu} \\
\approx-\frac{G_{F}}{2 \sqrt{2}} j_{Z}^{\mu} J_{Z \mu} \\
g=\frac{e}{\sin ^{2} \theta_{W}} \\
G_{F}=\frac{\pi \alpha}{\sqrt{2} M_{Z}^{2} \sin ^{2} \theta_{W} \cos ^{2} \theta_{W}}
\end{gathered}
$$

Parity-violating e scattering

- Electroweak lepton currents

$$
\begin{aligned}
j_{\gamma}^{\mu} & =\bar{u}_{e}\left(k^{\prime}\right) \gamma^{\mu} u_{e}(k) \\
j_{Z}^{\mu} & =\bar{u}_{e}\left(k^{\prime}\right)\left(g_{V}^{e} \gamma^{\mu}+g_{A}^{e} \gamma_{5}\right) u_{e}(k) \\
& g_{A}^{e}=-\frac{1}{2}, g_{V}^{e}=-\frac{1}{2}\left(1-4 \sin ^{2} \theta_{w}\right)
\end{aligned}
$$

- Hadronic currents

$$
\begin{aligned}
J_{\gamma, Z}^{\mu}= & \bar{u}_{N}\left(p^{\prime}\right) \Gamma_{\gamma, Z}^{\mu} u_{N}(p) \\
& \Gamma_{\gamma}^{\mu}=\gamma^{\mu} F_{1}^{\gamma}+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 M} F_{2}^{\gamma} \\
& \Gamma_{Z}^{\mu}=\gamma^{\mu} F_{1}^{Z}+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 M} F_{2}^{Z}+\gamma^{\mu} \gamma_{5} G_{A}^{Z}
\end{aligned}
$$

Parity-violating e scattering

- Born cross section

$$
\frac{d \sigma}{d \Omega}=\left(\frac{\alpha}{4 M Q^{2}} \frac{E^{\prime}}{E}\right)^{2}|\mathcal{M}|^{2}
$$

where total squared amplitude is

Parity-violating e scattering

- Left-right polarization asymmetry in $\vec{e} p \rightarrow e p$ scattering

$$
A_{\mathrm{PV}}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \alpha}\right)\left(A_{V}+A_{A}+A_{s}\right)
$$

\rightarrow measure interference between e.m. and weak currents

Parity-violating e scattering

■ Left-right polarization asymmetry in $\vec{e} p \rightarrow e p$ scattering

$$
A_{\mathrm{PV}}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \alpha}\right)\left(A_{V}+A_{A}+A_{s}\right)
$$

\rightarrow measure interference between e.m. and weak currents
vector asymmetry

$$
A_{V}=g_{A}^{e} \rho\left[\left(1-4 \kappa \sin ^{2} \theta_{W}\right)-\left(\varepsilon G_{E}^{\gamma p} G_{E}^{\gamma n}+\tau G_{M}^{\gamma p} G_{M}^{\gamma n}\right) / \sigma^{\gamma p}\right]
$$

axial vector asymmetry

$$
A_{A}=g_{V}^{e} \sqrt{\tau(1+\tau)\left(1-\varepsilon^{2}\right)} \widetilde{G}_{A}^{Z p} G_{M}^{\gamma p} / \sigma^{\gamma p}
$$

strange asymmetry

$$
A_{s}=-g_{A}^{e} \rho\left(\varepsilon G_{E}^{\gamma p} G_{E}^{s}+\tau G_{M}^{\gamma p} G_{M}^{s}\right) / \sigma^{\gamma p}
$$

Parity-violating e scattering

■ Left-right polarization asymmetry in $\vec{e} p \rightarrow e p$ scattering

$$
A_{\mathrm{PV}}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \alpha}\right)\left(A_{V}+A_{A}+A_{s}\right)
$$

\rightarrow measure interference between e.m. and weak currents
vector asymmetry

$$
G_{E, M}^{Z p}=\left(1-4 \sin ^{2} \theta_{W}\right) G_{E, M}^{\gamma p}-G_{E, M}^{\gamma n}-G_{E, M}^{s}
$$

Parity-violating e scattering

- Left-right polarization asymmetry in $\vec{e} p \rightarrow e p$ scattering

$$
A_{\mathrm{PV}}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \alpha}\right)\left(A_{V}+A_{A}+A_{s}\right)
$$

\rightarrow measure interference between e.m. and weak currents
axial vector asymmetry

$$
\begin{gathered}
A_{A}=g_{V}^{e} \sqrt{\tau(1+\tau)\left(1-\varepsilon^{2}\right)} \widetilde{G}_{A}^{Z p} G_{M}^{\gamma p} / \sigma^{\gamma p} \\
{\left[\begin{array}{c}
\text { insensitive to axial contribution } \\
\text { at forward angles }(\varepsilon \rightarrow 1)
\end{array}\right.}
\end{gathered}
$$

Parity-violating e scattering

- Left-right polarization asymmetry in $\vec{e} p \rightarrow e p$ scattering

$$
A_{\mathrm{PV}}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \alpha}\right)\left(A_{V}+A_{A}+A_{s}\right)
$$

\rightarrow measure interference between e.m. and weak currents

PVES experiments

Collaboration	Q^{2}	η_{0}	η_{A}^{p}	η_{A}^{n}	η_{E}	η_{M}	$A^{\text {phys }}$	δA	$\delta A_{\text {cor }}$	\tilde{G}_{A}^{p}	\tilde{G}_{A}^{n}	G_{E}^{s}	G_{M}^{s}	χ^{2}	C.L.
SAMPLE	0.038	-2.13	0.46	-0.30	1.16	0.28	-3.51	0.81	0						
SAMPLE	0.091	-7.02	1.04	-0.65	1.63	0.77	-7.77	1.03	0						
HAPPEx	0.091	-7.50	0	0	-20.2	0	-6.72	0.87	0						
HAPPEx	0.099	-1.40	0.04	0	9.55	0.76	-1.14	0.25	0						
SAMPLE	0.1	-5.47	1.58	0	2.11	3.46	-5.61	1.11	0	-2.6(21)	$-0.6(30)$	$-0.044(47)$	1.00(75)	1.0	63
PVA4	0.108	-1.80	0.26	0	10.1	1.05	-1.36	0.32	0	-2.0(20)	0.3(29)	$-0.025(43)$	$0.87(74)$	1.0	71
G0	0.122	-1.90	0.06	0	12.0	1.18	-1.51	0.49	0.18	-1.8(19)	0.5(27)	$-0.023(43)$	0.79(69)	0.7	76
G0	0.128	-2.04	0.06	0	12.6	1.30	-0.97	0.46	0.17	-2.4(18)	$-0.1(26)$	$-0.027(42)$	0.99(65)	0.7	96
G0	0.136	-2.24	0.07	0	13.5	1.48	-1.30	0.45	0.17	-2.5(17)	$-0.2(26)$	$-0.028(42)$	1.03(63)	0.6	99
G0	0.144	-2.44	0.08	0	14.3	1.67	-2.71	0.47	0.18	-1.6(16)	0.8(25)	$-0.021(42)$	0.71(61)	1.4	91
G0	0.153	-2.68	0.09	0	15.3	1.89	-2.22	0.51	0.21	-1.4(16)	1.0(25)	$-0.020(42)$	$0.66(60)$	1.2	91
G0	0.164	-2.97	0.11	0	16.5	2.19	-2.88	0.54	0.23	-1.1(16)	1.3(25)	$-0.018(42)$	0.55(60)	1.2	83
G0	0.177	-3.34	0.13	0	18.0	2.58	-3.95	0.50	0.20	-0.4(16)	2.1 (24)	$-0.012(42)$	0.32(59)	1.7	36
G0	0.192	-3.78	0.15	0	19.7	3.07	-3.85	0.53	0.19	$-0.2(15)$	2.3(24)	$-0.010(42)$	$0.24(58)$	1.6	18
G0	0.210	-4.34	0.19	0	21.8	3.72	-4.68	0.54	0.21	0.1(15)	2.7(24)	$-0.007(42)$	$0.14(57)$	1.6	
PVA4	0.230	-5.66	0.89	0	22.6	5.07	-5.44	0.60	0	0.0 (15)	2.5(24)	$-0.007(42)$	0.14(57)	1.5	
G0	0.232	-5.07	0.23	0	24.4	4.61	-5.27	0.59	0.23	0.2(14)	2.8(23)	$-0.005(42)$	$0.09(57)$	1.4	3
G0	0.262	-6.12	0.31	0	28.0	5.99	-5.26	0.53	0.17	-0.2(14)	2.3(23)	$-0.010(41)$	0.19(56)	1.4	18
G0	0.299	-7.51	0.42	0	32.6	8.00	-7.72	0.80	0.35	0.0 (14)	2.6(23)	$-0.006(41)$	0.12 (55)	1.3	5
G0	0.344	-9.35	0.57	0	38.4	10.9	-8.40	1.09	0.52	0.0 (14)	2.5(22)	$-0.008(41)$	$0.15(54)$	1.2	11
G0	0.410	-12.28	0.87	0	47.3	16.1	-10.25	1.11	0.55	-0.4(13)	2.1(22)	$-0.015(40)$	0.27(53)	1.2	44
HAPPEx	0.477	-15.46	1.12	0	56.9	22.6	-15.05	1.13	0	0.1(12)	2.7(21)	$-0.004(38)$	$0.10(49)$	1.2	28

$Q^{2} \sim 0.04-0.5 \mathrm{GeV}^{2}$
Young et al., PRL 97 (2006) 102002

PVES experiments

PVES global analysis

Young, Roche, Carlini, Thomas PRL 97 (2006) 102002

$$
\begin{aligned}
G_{E}^{s} & =+0.0025 \pm 0.0182 \\
G_{M}^{s} & =-0.011 \pm 0.254
\end{aligned}
$$

Liu, McKeown, Ramsey-Musolf PRC 76 (2007) 025202
$Q^{2}=0.1 \mathrm{GeV}^{2}$

$$
\begin{aligned}
G_{E}^{s} & =-0.008 \pm 0.016 \\
G_{M}^{s} & =+0.29 \pm 0.21
\end{aligned}
$$

\rightarrow strange form factors small (analyses compatible)
\rightarrow how important are higher order (e.g. γZ) corrections?

Two-boson exchange corrections

Two-photon exchange corrections

- calculation uses same framework as that for computing two-photon exchange corrections to e.m. form factors

$$
\mathcal{M}_{\gamma \gamma}=e^{4} \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{N(l)}{D(l)}+\text { crossed box }
$$

$$
\begin{gathered}
N(l)=\bar{u}\left(k^{\prime}\right) \gamma_{\mu}\left(\nless-l+m_{e}\right) \gamma_{\nu} u(k) \bar{u}\left(p^{\prime}\right) \Gamma^{\mu}(q-l)(\not p+l+M) \Gamma^{\nu}(l) u(p) \\
D(l)=\left(l^{2}-\lambda^{2}\right)\left((l-q)^{2}-\lambda^{2}\right)\left((k-l)^{2}-m_{e}^{2}\right)\left((p+l)^{2}-M^{2}\right) \\
\lambda(\rightarrow 0)=\text { infrared regulator }
\end{gathered}
$$

Two-photon exchange corrections

■ "exact" evaluation of integrals including form factors (Veltman-Passarino functions)
$\rightarrow c f$. soft photon approximation (used in most data analyses!) which assumes pole dominance of TPE amplitude \& neglects nucleon structure $N(l) \approx N(0)$

$$
\begin{gathered}
\mathcal{M}_{\gamma \gamma}=e^{4} \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{N(l)}{D(l)}+\text { crossed box } \\
N(l)=\bar{u}\left(k^{\prime}\right) \gamma_{\mu}\left(\nless-l+m_{e}\right) \gamma_{\nu} u(k) \bar{u}\left(p^{\prime}\right) \Gamma^{\mu}(q-l)(\not p+l+M) \Gamma^{\nu}(l) u(p) \\
D(l)=\left(l^{2}-\lambda^{2}\right)\left((l-q)^{2}-\lambda^{2}\right)\left((k-l)^{2}-m_{e}^{2}\right)\left((p+l)^{2}-M^{2}\right) \\
\lambda(\rightarrow 0)=\text { infrared regulator }
\end{gathered}
$$

Two-photon exchange corrections

- calculation uses same framework as that for computing two-photon exchange corrections to e.m. form factors

\rightarrow few \% magnitude, non-linear in ε, positive slope
\rightarrow does not depend strongly on vertex form factors

Two-photon exchange corrections

Arrington, WM, Tjon, PRC 76 (2007) 035205

Two-photon exchange corrections

- $1 \gamma(2 \gamma)$ exchange changes sign (invariant) under $e^{+} \leftrightarrow e^{-}$

Very preliminary Novosibirsk data

e^{+}-p/e-p cross section ratio

Arrington, Holt et al. (2010)

Two-boson exchange corrections

${ }^{66} \cap(7 \cap)^{99}$

" $Z(\gamma \gamma)$ "

$$
A_{\mathrm{PV}}=(1+\delta) A_{\mathrm{PV}}^{0} \equiv\left(\frac{1+\delta_{Z(\gamma \gamma)}+\delta_{\gamma(Z \gamma)}}{1+\delta_{\gamma(\gamma \gamma)}}\right) A_{\mathrm{PV}}^{0} \text { Born asymmetry }
$$

$$
\begin{array}{rlrl}
\delta_{\gamma(Z \gamma)}= & \frac{2 \Re e\left(\mathcal{M}_{\gamma}^{*} \mathcal{M}_{\gamma Z}+\mathcal{M}_{\gamma}^{*} \mathcal{M}_{Z \gamma}\right)}{2 \Re e\left(\mathcal{M}_{Z}^{*} \mathcal{M}_{\gamma}\right)} & \delta_{\gamma(\gamma \gamma)}=\frac{2 \Re e\left(\mathcal{M}_{\gamma}^{*} \mathcal{M}_{\gamma \gamma}\right)}{\left|\mathcal{M}_{\gamma}\right|^{2}} \\
\delta_{Z(\gamma \gamma)}=\frac{2 \Re e\left(\mathcal{M}_{Z}^{*} \mathcal{M}_{\gamma \gamma}\right)}{2 \Re e\left(\mathcal{M}_{Z}^{*} \mathcal{M}_{\gamma}\right)} & \delta \approx \delta_{Z(\gamma \gamma)}+\delta_{\gamma(Z \gamma)}-\delta_{\gamma(\gamma \gamma)}
\end{array}
$$

Two-boson exchange corrections

- nucleon intermediate states

Tjon, WM, PRL 100 (2008) 082003
Tjon, Blunden, WM, PRC 79 (2009) 055201
\rightarrow cancellation between $Z(\gamma \gamma)$ and $\gamma(\gamma \gamma)$ corrections, especially at low Q^{2}
\rightarrow dominated by $\gamma(Z \gamma)$ contribution

Two-boson exchange corrections

- Δ intermediate states

Tjon, WM, PRL 100 (2008) 082003
Tjon, Blunden, WM, PRC 79 (2009) 055201
$\rightarrow \Delta$ contribution small, except at very forward angles (numerators have higher powers of loop momenta)
$\rightarrow \Delta$ calculation less reliable for $\varepsilon \rightarrow 1$ (grows faster with s than nucleon)

Two-boson exchange corrections

$\rightarrow \sim 2-4 \%$ correction for $Q^{2} \sim 0.01-0.1 \mathrm{GeV}^{2}$
\rightarrow stronger Q^{2} dependence at larger Q^{2} (especially at forward angles)

TBE corrections at experimental kinematics

Tjon, Blunden, WM
PRC 79 (2009) 055201

$Q^{2}\left(\mathrm{GeV}^{2}\right)$	θ	Expt.	δ_{N}	δ_{Δ}	$\delta^{N+\Delta}$			
0.099	6.0°	Happex [1]	0.19	-1.20	-1.01	0.45		
0.477	$12.3{ }^{\circ}$	Happex [1]	0.13	-0.44	-0.31	0.16	0.86	
0.077	$6.0{ }^{\circ}$	Happex [3]	0.22	-1.04	-0.82	0.52	2.78	$\left(\gamma Z\right.$ at $\left.Q^{2}=0\right)$ need
0.1	$144.0{ }^{\circ}$	Sample [5]	1.63	-0.09	1.54	0.06	0.33	$\left(\gamma Z\right.$ at $\left.Q^{2}=0\right)$ need
0.108	35.37°	PVAA [7]	1.05	0.78	1.83	0.37	1.98	to be removed befo
0.23	35.31°	PVAA [7]	0.62	0.34	0.96	0.23	1.22	adding new results
0.122	$6^{6.68{ }^{\circ}}$	G0 [2]	0.18	-1.06	-0.88	0.40	2.13	
0.128	$6.84{ }^{\text {c }}$	G0 [2]	0.18	-1.03	-0.85	0.39	2.07	
0.136	$7.06{ }^{\circ}$	G0 [2]	0.18	-0.99	-0.81	0.37	1.99	
0.144	7.27°	G0 [2]	0.17	-0.96	-0.79	0.36	1.92	
0.153	$7.5{ }^{\circ}$	G0 [2]	0.17	-0.92	-0.75	0.35	1.85	
0.164	7.77°	G0 [2]	0.17	-0.88	-0.71	0.33	1.77	
0.177	8.09°	G0 [2]	0.16	-0.83	-0.67	0.32	1.69	
0.192	8.43°	G0 [2]	0.16	-0.79	-0.63	0.30	1.60	
0.21	$8.84{ }^{\circ}$	G0 [2]	0.16	-0.73	-0.57	0.28	1.51	G0 (fwd): < 1%
0.232	9.31°	G0 [2]	0.16	-0.68	-0.52	0.26	1.41	(negative)
0.262	$9.92{ }^{\text {e }}$	G0 [2]	0.15	-0.62	-0.47	0.24	1.30	
0.299	10.63°	G0 [2]	0.15	-0.55	-0.40	0.22	1.19	
0.34	11.46°	G0 [2]	0.15	-0.48	-0.33	0.20	1.07	
0.41	12.59°	G0 [2]	0.15	-0.41	-0.26	0.18	0.95	
0.511	$14.2{ }^{\circ}$	G0 [2]	0.15	-0.32	-0.17	0.15	0.81	
0.631	15.98°	G0 [2]	0.15	-0.26	-0.11	0.13	0.70	
0.788	18.16°	G0 [2]	0.16	-0.23	-0.07	0.11	0.60	G0 (bck): ~ 1%
0.997	$20.9{ }^{\circ}$	G0 [2]	0.17	-0.22	-0.05	0.10	0.51	
0.23	$110.0{ }^{\circ}$	G0 [4]	1.37	-0.10	1.27	0.09	$\overline{0.47}$	
0.62	$110.0{ }^{\circ}$	G0 [4]	1.10	-0.15	0.95	0.07	0.35	

Effect on strange form factors

\square include TBE corrections in global analysis
\rightarrow e.g. Young et al.

$$
\begin{aligned}
& \begin{array}{c}
G_{E}^{s}=+0.0025 \pm 0.0182 \\
G_{M}^{s}=-0.011 \pm 0.254
\end{array} \\
& \begin{array}{l}
G_{E}^{s}=+0.0023 \pm 0.0182 \\
G_{M}^{s}=-0.020 \pm 0.254
\end{array} \quad \text { at } Q^{2}=0.1 \mathrm{GeV}^{2}
\end{aligned}
$$

\rightarrow small (absolute) shift in strange form factors from TBE (large relative shift to G_{M}^{s}), well within experimental errors

Extraction of proton's weak charge

- JLab Qweak experiment -

Correction to proton weak charge

■ in forward limit A_{PV} measures weak charge of proton Q_{W}^{p}

$$
A_{\mathrm{PV}} \rightarrow \frac{G_{F} Q_{W}^{p}}{4 \sqrt{2} \pi \alpha} t
$$

forward limit

$$
\begin{aligned}
t & =\left(k-k^{\prime}\right)^{2} \rightarrow 0 \\
s & =(k+p)^{2} \\
& =M(M+2 E)
\end{aligned}
$$

- at tree level Q_{W}^{p} gives weak mixing angle

$$
Q_{W}^{p}=1-4 \sin ^{2} \theta_{W}
$$

Correction to proton weak charge

- including higher order radiative corrections

$$
\begin{aligned}
Q_{W}^{p}= & \left(1+\Delta \rho+\Delta_{e}\right)\left(1-4 \sin ^{2} \theta_{W}(0)+\Delta_{e}^{\prime}\right) \\
& +\square_{W W}+\square_{Z Z}+\square_{\gamma Z} \longleftarrow \text { box diagrams } \\
= & \begin{array}{l}
0.0713 \pm 0.0008^{*} \\
\\
\\
\text { Erler et al., PRD } 72 \text { (2005) } 073003
\end{array} \quad * \sin ^{2} \theta_{W}(0)=0.23867(16)
\end{aligned}
$$

$\rightarrow W W$ and ZZ box diagrams dominated by short distances, evaluated perturbatively
$\rightarrow \quad \gamma Z$ box diagram sensitive to long distance physics, has two contributions

Axial h correction

- axial h correction $\square_{\gamma Z}^{A}$ dominant γZ correction in atomic parity violation at very low (zero) energy
\rightarrow computed by Marciano \& Sirlin as sum of two parts:

ش low-energy part approximated by Born contribution (elastic intermediate state)

* high-energy part (above scale $\Lambda \sim 1 \mathrm{GeV}$) computed in terms of scattering from free quarks

$$
\begin{aligned}
\square_{\gamma Z}^{A} & =\frac{5 \alpha}{2 \pi}\left(1-4 \sin ^{2} \theta_{W}\right)\left[\ln \frac{M_{Z}^{2}}{\Lambda^{2}}+C_{\gamma Z}(\Lambda)\right] \\
& \approx 0.0048 \quad \text { short-distance } \quad \text { long-distance }
\end{aligned}
$$

Axial h correction

- axial h correction $\square_{\gamma Z}^{A}$ dominant γZ correction in atomic parity violation at very low (zero) energy
\rightarrow repeat calculation using forward dispersion relations with realistic (structure function) input

* axial h contribution antisymmetric under $E^{\prime} \leftrightarrow-E^{\prime}$:

$$
\Re e \square_{\gamma Z}^{A}(E)=\frac{2}{\pi} \int_{0}^{\infty} d E^{\prime} \frac{E^{\prime}}{E^{\prime \prime}-E^{2}} \Im m \square_{\gamma Z}^{A}\left(E^{\prime}\right)
$$

\star imaginary part can only grow as $\log E^{\prime} / E^{\prime}$

Axial h correction

- imaginary part given by interference $F_{3}^{\gamma Z}$ structure function

$$
\begin{aligned}
\Im m \square_{\gamma Z}^{A}(E)=\frac{\alpha}{\left(s-M^{2}\right)^{2}} & \int_{W_{\pi}^{2}}^{s} d W^{2} \int_{0}^{Q_{\max }^{2}} \frac{d Q^{2}}{1+Q^{2} / M_{Z}^{2}} \\
& \times \frac{g_{V}^{e}}{2 g_{A}^{e}}\left(\frac{4 M E}{W^{2}-M^{2}+Q^{2}}-1\right) F_{3}^{\gamma Z}
\end{aligned}
$$

with $g_{A}^{e}=-\frac{1}{2}, g_{V}^{e}=-\frac{1}{2}\left(1-4 \hat{s}^{2}\right)$

$$
\begin{aligned}
\hat{s}^{2} & =\sin ^{2} \theta_{W}^{\overline{\mathrm{MS}}}\left(M_{Z}\right) \\
& =0.23116(13)
\end{aligned}
$$

$\rightarrow F_{3}^{\gamma Z}$ structure function
\star elastic part given by $G_{M}^{p} G_{A}^{Z}$
\star resonance part from parametrization of ν scattering data (Lalakulich-Paschos)

* DIS part dominated by leading twist PDFs at small x (MSTW, CTEQ, Alekhin)

Axial h correction

- change integration variable $W^{2} \rightarrow x$ and switch order of integration
$\operatorname{Im} \square_{\gamma Z}^{A}=\left(1-4 \hat{s}^{2}\right) \frac{\alpha}{2 M E} \int_{0}^{2 M E} \frac{d Q^{2}}{1+Q^{2} / M_{Z}^{2}} \int_{x_{\min }}^{1} \frac{d x}{x}\left(1-\frac{y}{2}\right) F_{3}^{\gamma Z}$
where $y=\left(W^{2}-M^{2}+Q^{2}\right) / 2 M E$
\rightarrow in DIS region $\left(Q^{2} \gtrsim 1 \mathrm{GeV}^{2}\right)$, expand integrand in $1 / Q^{2}$

$$
\begin{aligned}
\mathcal{R} e \square_{\gamma Z}^{A(\mathrm{DIS})} & =\left(1-4 \hat{s}^{2}\right) \frac{3 \alpha}{2 \pi} \int_{Q_{0}^{2}}^{\infty} \frac{d Q^{2}}{Q^{2}\left(1+Q^{2} / M_{Z}^{2}\right)} \\
& \times\left[M_{3}^{\gamma Z(1)}-\frac{2 M^{2}}{9 Q^{4}}\left(5 E^{2}-3 Q^{2}\right) M_{3}^{\gamma Z(3)}\right]
\end{aligned}
$$

with moments $M_{3}^{\gamma Z(n)}\left(Q^{2}\right)=\int_{0}^{1} d x x^{n-1} F_{3}^{\gamma Z}\left(x, Q^{2}\right)$

Axial h correction

- structure function moments
$\underline{n=1} \quad M_{3}^{\gamma Z(1)}\left(Q^{2}\right)=\frac{5}{3}\left(1-\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right)$
$\rightarrow \gamma Z$ analog of Gross-Llewellyn Smith sum rule
$\mathcal{R} e \square_{\gamma Z}^{A(\text { DIS })} \approx\left(1-4 \hat{s}^{2}\right) \frac{5 \alpha}{2 \pi} \int_{Q_{0}^{2}}^{\infty} \frac{d Q^{2}}{Q^{2}\left(1+Q^{2} / M_{Z}^{2}\right)}\left(1-\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right)$
\rightarrow precisely result from Marciano \& Sirlin! (works because result depends on lowest moment of valence PDF, with model-independent normalization!)
$\underline{n=3} \quad M_{3}^{\gamma Z(3)}\left(Q^{2}\right)=\frac{1}{3}\left(2\langle x\rangle_{u_{V}}+\langle x\rangle_{d_{V}}\right)\left(1+\frac{5 \alpha_{s}\left(Q^{2}\right)}{12 \pi}\right)$
\rightarrow related to momentum carried by valence quarks

Axial h correction

Blunden, WM, Thomas (2011)
\rightarrow dominated by DIS contribution (weak E dependence)

Axial h correction

\rightarrow correction at $\underline{E=0}$

$$
\Re e \square_{\gamma Z}^{A}=\underset{\substack{\uparrow \\ \text { elastic }} \underset{\uparrow}{0.0009}}{\substack{\text { resonance }}} \underset{\uparrow}{0.0003}+\underset{\text { DIS }}{0.0037}=\underline{0.0050}
$$

\rightarrow correction at $\underline{E=1.165 \mathrm{GeV}}$ (Qweak)

$$
\Re e \square_{\gamma Z}^{A}=0.00006+0.0002+0.0037=\underline{0.0039}
$$

$c f$. MS value: $\underline{0.0048}\left(\sim 1 \%\right.$ shift in $\left.Q_{W}^{p}\right)$

Vector h correction

- vector h correction $\square_{\gamma Z}^{V}$ vanishes at $E=0$, but experiment has $E \sim 1 \mathrm{GeV}$ - what is energy dependence?
\rightarrow forward dispersion relation
$\star \Re e \square_{\gamma Z}^{V}(E)=\frac{2 E}{\pi} \int_{0}^{\infty} d E^{\prime} \frac{1}{E^{\prime 2}-E^{2}} \Im m \square_{\gamma Z}^{V}\left(E^{\prime}\right)$
\star integration over $E^{\prime}<0$ corresponds to crossed-box, vector h contribution symmetric under $E^{\prime} \leftrightarrow-E^{\prime}$
\rightarrow imaginary part given by

$$
\Im m \square_{\gamma Z}^{V}(E)=\frac{\alpha}{\left(s-M^{2}\right)^{2}} \int_{W_{\pi}^{2}}^{s} d W^{2} \int_{0}^{Q_{\max }^{2}} \frac{d Q^{2}}{1+Q^{2} / M_{Z}^{2}}
$$

factor 2 larger than GH; confirmed by Rislow \& Carlson, arXiv: 1011:2397 [hep-ph]

$$
\times\left(F_{1}^{\gamma Z}+F_{2}^{\gamma Z} \frac{s\left(Q_{\max }^{2}-Q^{2}\right)}{Q^{2}\left(W^{2}-M^{2}+Q^{2}\right)}\right)
$$

Gorchtein, Horowitz, PRL 102 (2009) 091806
Gorchtein, Horowitz, Ramsey-Musolf, arXiv:1003.4300

Vector h correction

$\rightarrow F_{1,2}^{\gamma Z}$ structure functions

* parton model for DIS region $F_{2}^{\gamma Z}=2 x \sum_{q} e_{q} g_{V}^{q}(q+\bar{q})=2 x F_{1}^{\gamma Z}$
$\rightarrow{F_{2}^{\gamma Z}}_{2} F_{2}^{\gamma}$ good approximation at low x
\rightarrow provides upper limit at large $x\left(F_{2}^{\gamma} \lesssim F_{2}^{\gamma}\right)$
* in resonance region use phenomenological input for F_{2}, empirical (SLAC) fit for R
\rightarrow for transitions to $\underline{I=3 / 2}$ states (e.g. Δ), CVC and isospin symmetry give $F_{i}^{\gamma Z}=\left(1+Q_{W}^{p}\right) F_{i}^{\gamma}$
\rightarrow for transitions to $\underline{I=1 / 2}$ states, $\mathrm{SU}(6)$ wave functions predict $Z \& \gamma$ transition couplings equal to a few $\%$

Vector h correction

\rightarrow compare structure function input with data

Vector h correction

\rightarrow total $\square_{\gamma Z}^{V}$ correction:
$\Re e \square_{\gamma Z}^{V}=0.0047_{-0.0004}^{+0.0011}$
or $6.6_{-0.6}^{+1.5} \%$ of uncorrected Q_{W}^{p}

$$
Q_{W}^{p}=0.0713 \rightarrow 0.0760
$$

Sibirtsev, Blunden, WM, Thomas
PRD 82 (2010) 013011

Vector h correction

\rightarrow total $\square_{\gamma Z}^{V}$ correction:

$$
\Re e \square_{\gamma Z}^{V}=0.0057 \pm 0.0009
$$

\rightarrow compatible with SBMT within errors

Rislow, Carlson, arXiv:1011.2397 [hep-ph]

$$
\Re e \delta_{\gamma Z}=\Re e \square_{\gamma Z}^{V} / Q_{W}^{p} \approx 6 \%
$$ mostly from high-W ("Regge") contribution

\rightarrow our formula for $\Im m \square_{\gamma Z}^{V}$ factor 2 larger * ("nuclear physics" vs."particle physics" conventions for weak charges in structure function definitions?)
$\rightarrow \mathrm{GH}$ omit factor $(1-x)$ in definition of $F_{1,2}$ ($\sim 30 \%$ enhancement)
$\rightarrow \mathrm{GH}$ use $Q_{W}^{p} \sim 0.05$ cf. ~ 0.07 ($\sim 40 \%$ enhancement)
\rightarrow numerical agreement for $\delta_{\gamma Z}^{V}$ coincidental (?)

Combined vector and axial h correction

$$
Q_{W}^{p}=0.0713 \rightarrow \approx 0.076
$$

\rightarrow significant shift in central value, errors within projected experimental uncertainty $\Delta Q_{W}^{p}= \pm 0.003$

Summary

- Two-boson exchange corrections play minor role in strange form factor extraction
$\rightarrow c f$. significant role of TPE in Rosenbluth extraction of G_{E}^{p}
- Dramatic effect of $\gamma(Z \gamma)$ corrections at forward angles on proton weak charge, $\Delta Q_{W}^{p} \sim 6 \%, c f$. PDG
\rightarrow would significantly shift extracted weak angle
\rightarrow better constraints from direct measurement of $F_{1,2,3}^{\gamma Z}$ (e.g. in PVDIS at JLab)
- New formulation in terms of moments of structure functions
\rightarrow places on firm footing earlier derivation of Marciano/Sirlin in "free quark model"

The End

